Difference between revisions of "2000 AMC 8 Problems/Problem 24"

(Created page with "If <math> \angle A = 20^\circ </math> and <math> \angle AFG =\angle AGF </math>, then <math> \angle B+\angle D = </math> <asy> pair A,B,C,D,EE,F,G; A = (0,0); B = (9,4); C = (21...")
 
(Problem)
(11 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 +
==Problem==
 +
 
If <math> \angle A = 20^\circ </math> and <math> \angle AFG =\angle AGF </math>, then <math> \angle B+\angle D = </math>
 
If <math> \angle A = 20^\circ </math> and <math> \angle AFG =\angle AGF </math>, then <math> \angle B+\angle D = </math>
  
Line 19: Line 21:
 
label("$G$",G,NW);</asy>
 
label("$G$",G,NW);</asy>
  
<math> \text{(A)}\ 48^\circ\qquad\text{(B)}\ 60^\circ\qquad\text{(C)}\ 72^\circ\qquad\text{(D)}\ 80^\circ\qquad\text{(E)}\ 90^\circ </math>
+
$ \text{(A)}\ 48^\circ\qquad\text{(B)}\ 60^\circ\qquad\text{(C)}\ 72^\circ\qquad\text{(D)}\ 80^\
 +
 
 +
== Video Solution ==
 +
https://www.youtube.com/watch?v=8ntXubG2Iho  ~David
 +
 
 +
==See Also==
 +
 
 +
{{AMC8 box|year=2000|num-b=23|num-a=25}}
 +
{{MAA Notice}}

Revision as of 19:56, 1 September 2024

Problem

If $\angle A = 20^\circ$ and $\angle AFG =\angle AGF$, then $\angle B+\angle D =$

[asy] pair A,B,C,D,EE,F,G; A = (0,0); B = (9,4); C = (21,0); D = (13,-12); EE = (4,-16); F = (13/2,-6); G = (8,0); draw(A--C--EE--B--D--cycle); label("$A$",A,W); label("$B$",B,N); label("$C$",C,E); label("$D$",D,SE); label("$E$",EE,SW); label("$F$",F,WSW); label("$G$",G,NW);[/asy]

$ \text{(A)}\ 48^\circ\qquad\text{(B)}\ 60^\circ\qquad\text{(C)}\ 72^\circ\qquad\text{(D)}\ 80^\

Video Solution

https://www.youtube.com/watch?v=8ntXubG2Iho ~David

See Also

2000 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png