|
|
(18 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | ==PaperMath’s circles==
| + | #REDIRECT [[Annular Steiner chains]] |
− | This theorem states that for a <math>n</math> tangent externally tangent circles with equal radii in the shape of a <math>n</math>-gon, the radius of the circle that is externally tangent to all the other circles can be written as <math>\frac {r(1-\cos(\frac{90(n-2)}n)}{\cos(\frac{90(n-2)}n)}</math> and the radius of the circle that is internally tangent to all the other circles can be written as <math>\frac {r(1-\cos(\frac{90(n-2)}n)}{\cos(\frac{90(n-2)}n)}+2r</math> Where <math>r</math> is the radius of one of the congruent circles and where <math>n</math> is the number of tangent circles. The formula for the radius of the externally tangent circle is true for all values of <math>n>4</math>, since there would obviously be no circle that could be drawn internally tangent to the other circles at <math>n \leq 4</math>
| |
− | ==Proof==
| |
− | We can let <math>r</math> be the radius of one of the congruent circles, and let <math>x</math> be the radius of the externally tangent circle, which means the side length of the <math>n</math>-gon is <math>2r</math>. We can draw an apothem of the <math>n</math>-gon, which bisects the side length, forming a right triangle. The length of the base is half of <math>2r</math>, or <math>r</math>, and the hypotenuse is <math>x+r</math>. The angle adjacent to the base is half of an angle of a regular <math>n</math>-gon. We know the angle of a regular <math>n</math>-gon to be <math>\frac {180(n-2)}n</math>, so half of that would be <math>\frac {90(n-2)}n</math>. Let <math>a=\frac {90(n-2)}n</math> for simplicity. We now have <math>\cos a=\frac {adj}{hyp}</math>, or <math>\cos a = \frac {r}{x+r}</math>. Multiply both sides by <math>x+r</math> and we get <math>\cos a~x+\cos a~r=r</math>, and then a bit of manipulation later you get that <math>x=\frac {r(1-\cos a}{cos a}</math>, or when you plug in <math>a=\frac {90(n-2)}n</math>, you get <math>\frac {r(1-\cos(\frac{90(n-2)}n)}{\cos(\frac{90(n-2)}n)}</math>. Add <math>2r</math> to find the radius of the internally tangent circle to get <math>\frac {r(1-\cos(\frac{90(n-2)}n)}{\cos(\frac{90(n-2)}n)}+2r</math>, and we are done.
| |
− | ==Notes==
| |
− | Papermath’s sum was discovered by the aops user Papermath, as the name implies.
| |
− | ==See also==
| |
− | *[[PaperMath’s sum]]
| |
− | [[Category:Geometry]]
| |
− | [[Category:Theorems]]
| |