Difference between revisions of "2024 AMC 8 Problems/Problem 1"

(Solution 2(Tedious))
m (Problem 1)
(33 intermediate revisions by 18 users not shown)
Line 1: Line 1:
==Problem==
+
==Problem 1==
What is the ones digit of<cmath>222,222-22,222-2,222-222-22-2?</cmath><math>\textbf{(A) } 0\qquad\textbf{(B) } 2\qquad\textbf{(C) } 4\qquad\textbf{(D) } 6\qquad\textbf{(E) } 8</math>
+
What is the ones digit of <cmath>222{,}222-22{,}222-2{,}222-222-22-2?</cmath>
 +
<math>\textbf{(A) } 0\qquad\textbf{(B) } 2\qquad\textbf{(C) } 4\qquad\textbf{(D) } 6\qquad\textbf{(E) } 8</math>
  
 
==Solution 1==
 
==Solution 1==
 
+
 
We can rewrite the expression as <cmath>222,222-(22,222+2,222+222+22+2).</cmath>
 
We can rewrite the expression as <cmath>222,222-(22,222+2,222+222+22+2).</cmath>
 
+
 +
 +
 +
 +
 
We note that the units digit of the addition is <math>0</math> because all the units digits of the five numbers are <math>2</math> and <math>5*2=10</math>, which has a units digit of <math>0</math>.
 
We note that the units digit of the addition is <math>0</math> because all the units digits of the five numbers are <math>2</math> and <math>5*2=10</math>, which has a units digit of <math>0</math>.
 
+
 +
 +
 +
 +
 
Now, we have something with a units digit of <math>0</math> subtracted from <math>222,222</math>. The units digit of this expression is obviously <math>2</math>, and we get <math>\boxed{B}</math> as our answer.
 
Now, we have something with a units digit of <math>0</math> subtracted from <math>222,222</math>. The units digit of this expression is obviously <math>2</math>, and we get <math>\boxed{B}</math> as our answer.
 +
 +
 +
 +
 +
  
i am smart
+
==Solution 2==
 
 
~ Dreamer1297
 
  
==Solution 2(Tedious)==
+
<math>222,222-22,222 = 200,000</math>
 
+
<math>200,000 - 2,222 = 197778</math>
Using the oniichan Thereom, we deduce that the answer is (B)
+
<math>197778 - 222 = 197556</math>
 +
<math>197556 - 22 = 197534</math>
 +
<math>197534 - 2 = 1957532
 +
</math>
 +
So our answer is <math>\boxed{\textbf{(B) } 2}</math>.
  
 
==Solution 3==
 
==Solution 3==
Line 23: Line 39:
  
 
Thus, <math>2-2</math> ends in <math>0</math>, <math>0-2</math> ends in <math>8</math>, <math>8-2</math> ends in <math>6</math>, <math>6-2</math> ends in <math>4</math>, and <math>4-2</math> ends in  <math>\boxed{\textbf{(B) } 2}</math>.
 
Thus, <math>2-2</math> ends in <math>0</math>, <math>0-2</math> ends in <math>8</math>, <math>8-2</math> ends in <math>6</math>, <math>6-2</math> ends in <math>4</math>, and <math>4-2</math> ends in  <math>\boxed{\textbf{(B) } 2}</math>.
 
~iasdjfpawregh
 
~vockey
 
  
 
==Solution 4==
 
==Solution 4==
  
Let <math>S</math> be equal to the expression at hand. We reduce each term modulo <math>10</math> to find the units digit of each term in the expression, and thus the units digit of the entire thing:
 
 
<cmath>S\equiv 2 - 2 - 2 - 2- 2- 2 \equiv -8 \equiv -8 + 10\equiv \boxed{\textbf{(B) } 2} \pmod{10}.</cmath>
 
 
-Benedict T (countmath1)
 
 
 
 
==Solution 5==
 
 
We just take the units digit of each and subtract, or you can do it this way by adding an extra ten to the first number (so we don't get a negative number):
 
We just take the units digit of each and subtract, or you can do it this way by adding an extra ten to the first number (so we don't get a negative number):
<cmath>12-2-(2+2+2+2)=10-8=2</cmath>
+
<cmath>(12-2)-(2+2+2+2)=10-8=2</cmath>
 
Thus, we get the answer <math>\boxed{(B)}</math>
 
Thus, we get the answer <math>\boxed{(B)}</math>
  
- U-King
+
==Video Solution (A Clever Explanation You’ll Get Instantly)==
 
+
https://youtu.be/5ZIFnqymdDQ?si=IbHepN2ytt7N23pl&t=53
==Solution 6(fast)==
 
uwu  <math>\boxed{(uwu)}</math>
 
 
 
- uwu gamer girl(ꈍᴗꈍ)
 
 
 
This is not useful. Please come up with a proper solution or delete.
 
 
 
Hello, please remove this nonsense post, or your account will be in risk of banning.
 
 
 
I DONT CARE NOBODY ASKED(ꈍᴗꈍ)
 
 
 
==Solution 7==
 
2-2=0. Therefore, ones digit is the 10th avacado  <math>\boxed{(F)}</math>
 
 
 
- iamcalifornia'sresidentidiot
 
 
 
Hello, please remove this nonsense post, or your account will be in risk of banning
 
  
this is not nonsense like what are you yapping about this is the most beautiful solution every to be conceived in all of humanity i literally deserve a nobel prize
+
~hsnacademy
  
PS touch grass
+
==Video Solution 1 (Quick and Easy!)==
 +
https://youtu.be/Ol1seWX0xHY
  
==Video Solution 1 (easy to digest) by Power Solve==
+
~Education, the Study of Everything
https://www.youtube.com/watch?v=dQw4w9WgXcQ
 
  
 
==Video Solution (easy to understand)==
 
==Video Solution (easy to understand)==
https://youtu.be/BaE00H2SHQM?si=_8lhp8-dzNxZ-eUQ
+
https://youtu.be/BaE00H2SHQM?si=O0O0g7qq9AbhQN9I&t=130
  
 
~Math-X
 
~Math-X
  
==Video Solution by NiuniuMaths (Easy to understand!)==
+
==Video Solution by Interstigation==
https://www.youtube.com/watch?v=dQw4w9WgXcQ
+
https://youtu.be/ktzijuZtDas&t=36
 
 
~Rick Aopsly
 
  
==Video Solution 2 by uwu==
+
==Video Solution by Daily Dose of Math==
https://www.youtube.com/watch?v=dQw4w9WgXcQ
 
  
== Video Solution by CosineMethod [🔥Fast and Easy🔥]==
+
https://youtu.be/bSPWqeNO11M?si=HIzlxPjMfvGM5lxR
  
https://www.youtube.com/watch?v=dQw4w9WgXcQ
+
~Thesmartgreekmathdude
  
== cool solution must see ==
+
==Video Solution by Dr. David==
  
https://www.youtube.com/watch?v=dQw4w9WgXcQ
+
https://youtu.be/RzPadkHd3Yc
==Video Solution by Interstigation==
 
https://youtu.be/ktzijuZtDas&t=36
 
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2024|before=First Problem|num-a=2}}
 
{{AMC8 box|year=2024|before=First Problem|num-a=2}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 02:40, 25 September 2024

Problem 1

What is the ones digit of \[222{,}222-22{,}222-2{,}222-222-22-2?\] $\textbf{(A) } 0\qquad\textbf{(B) } 2\qquad\textbf{(C) } 4\qquad\textbf{(D) } 6\qquad\textbf{(E) } 8$

Solution 1

− We can rewrite the expression as \[222,222-(22,222+2,222+222+22+2).\]


− We note that the units digit of the addition is $0$ because all the units digits of the five numbers are $2$ and $5*2=10$, which has a units digit of $0$.


− Now, we have something with a units digit of $0$ subtracted from $222,222$. The units digit of this expression is obviously $2$, and we get $\boxed{B}$ as our answer.


Solution 2

$222,222-22,222 = 200,000$ $200,000 - 2,222 = 197778$ $197778 - 222 = 197556$ $197556 - 22 = 197534$ $197534 - 2 = 1957532$ So our answer is $\boxed{\textbf{(B) } 2}$.

Solution 3

We only care about the unit's digits.

Thus, $2-2$ ends in $0$, $0-2$ ends in $8$, $8-2$ ends in $6$, $6-2$ ends in $4$, and $4-2$ ends in $\boxed{\textbf{(B) } 2}$.

Solution 4

We just take the units digit of each and subtract, or you can do it this way by adding an extra ten to the first number (so we don't get a negative number): \[(12-2)-(2+2+2+2)=10-8=2\] Thus, we get the answer $\boxed{(B)}$

Video Solution (A Clever Explanation You’ll Get Instantly)

https://youtu.be/5ZIFnqymdDQ?si=IbHepN2ytt7N23pl&t=53

~hsnacademy

Video Solution 1 (Quick and Easy!)

https://youtu.be/Ol1seWX0xHY

~Education, the Study of Everything

Video Solution (easy to understand)

https://youtu.be/BaE00H2SHQM?si=O0O0g7qq9AbhQN9I&t=130

~Math-X

Video Solution by Interstigation

https://youtu.be/ktzijuZtDas&t=36

Video Solution by Daily Dose of Math

https://youtu.be/bSPWqeNO11M?si=HIzlxPjMfvGM5lxR

~Thesmartgreekmathdude

Video Solution by Dr. David

https://youtu.be/RzPadkHd3Yc

See Also

2024 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png