Difference between revisions of "2002 AMC 12P Problems/Problem 25"
(Created page with "== Problem == How many positive integers <math>b</math> have the property that <math>\log_{b} 729</math> is a positive integer? <math> \mathrm{(A) \ 0 } \qquad \mathrm{(B...") |
(→Solution) |
||
(25 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | + | Let <math>a</math> and <math>b</math> be real numbers such that <math>\sin{a} + \sin{b} = \frac{\sqrt{2}}{2}</math> and <math>\cos {a} + \cos {b} = \frac{\sqrt{6}}{2}.</math> Find <math>\sin{(a+b)}.</math> | |
− | <math> \ | + | <math> |
+ | \text{(A) }\frac{1}{2} | ||
+ | \qquad | ||
+ | \text{(B) }\frac{\sqrt{2}}{2} | ||
+ | \qquad | ||
+ | \text{(C) }\frac{\sqrt{3}}{2} | ||
+ | \qquad | ||
+ | \text{(D) }\frac{\sqrt{6}}{2} | ||
+ | \qquad | ||
+ | \text{(E) }1 | ||
+ | </math> | ||
== Solution == | == Solution == | ||
− | + | Sum to product gives us | |
+ | |||
+ | <cmath>2\sin(\frac{a+b}{2})\cos(\frac{a-b}{2}) = \frac{\sqrt{2}}{2}</cmath> | ||
+ | |||
+ | <cmath>2\cos(\frac{a+b}{2})\cos(\frac{a-b}{2}) = \frac{\sqrt{6}}{2}</cmath> | ||
+ | |||
+ | Dividing these equations tells us that <math>\tan(\frac{a+b}{2}) = \frac{1}{\sqrt{3}}</math>, so <math>\frac{a+b}{2} = \frac{\pi}{6} + \pi n</math> for an integer <math>n</math>, so <math>\sin(a+b) = \sin (\frac{\pi}{3} + 2\pi n) = \frac{\sqrt{3}}{2}</math>. The answer is <math>\boxed{(C)}</math>. | ||
+ | |||
+ | ~alexanderruan | ||
== See also == | == See also == | ||
− | {{AMC12 box|year= | + | {{AMC12 box|year=2002|ab=P|num-b=24|after=Last question}} |
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 19:02, 3 October 2024
Problem
Let and be real numbers such that and Find
Solution
Sum to product gives us
Dividing these equations tells us that , so for an integer , so . The answer is .
~alexanderruan
See also
2002 AMC 12P (Problems • Answer Key • Resources) | |
Preceded by Problem 24 |
Followed by Last question |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.