Difference between revisions of "2002 AMC 12P Problems/Problem 25"

(Problem)
(Solution)
 
(22 intermediate revisions by 6 users not shown)
Line 15: Line 15:
  
 
== Solution ==
 
== Solution ==
If <math>\log_{b} 729 = n</math>, then <math>b^n = 729</math>. Since <math>729 = 3^6</math>, <math>b</math> must be <math>3</math> to some [[factor]] of 6. Thus, there are four (3, 9, 27, 729) possible values of <math>b \Longrightarrow \boxed{\mathrm{E}}</math>.
+
Sum to product gives us
 +
 
 +
<cmath>2\sin(\frac{a+b}{2})\cos(\frac{a-b}{2}) = \frac{\sqrt{2}}{2}</cmath>
 +
 
 +
<cmath>2\cos(\frac{a+b}{2})\cos(\frac{a-b}{2}) = \frac{\sqrt{6}}{2}</cmath>
 +
 
 +
Dividing these equations tells us that <math>\tan(\frac{a+b}{2}) = \frac{1}{\sqrt{3}}</math>, so <math>\frac{a+b}{2} = \frac{\pi}{6} + \pi n</math> for an integer <math>n</math>, so <math>\sin(a+b) = \sin (\frac{\pi}{3} + 2\pi n) = \frac{\sqrt{3}}{2}</math>. The answer is <math>\boxed{(C)}</math>.
 +
 
 +
~alexanderruan
  
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2002|ab=P|num-b=24|after=Last question}}
 
{{AMC12 box|year=2002|ab=P|num-b=24|after=Last question}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 19:02, 3 October 2024

Problem

Let $a$ and $b$ be real numbers such that $\sin{a} + \sin{b} = \frac{\sqrt{2}}{2}$ and $\cos {a} + \cos {b} = \frac{\sqrt{6}}{2}.$ Find $\sin{(a+b)}.$

$\text{(A) }\frac{1}{2} \qquad \text{(B) }\frac{\sqrt{2}}{2} \qquad \text{(C) }\frac{\sqrt{3}}{2} \qquad \text{(D) }\frac{\sqrt{6}}{2} \qquad \text{(E) }1$

Solution

Sum to product gives us

\[2\sin(\frac{a+b}{2})\cos(\frac{a-b}{2}) = \frac{\sqrt{2}}{2}\]

\[2\cos(\frac{a+b}{2})\cos(\frac{a-b}{2}) = \frac{\sqrt{6}}{2}\]

Dividing these equations tells us that $\tan(\frac{a+b}{2}) = \frac{1}{\sqrt{3}}$, so $\frac{a+b}{2} = \frac{\pi}{6} + \pi n$ for an integer $n$, so $\sin(a+b) = \sin (\frac{\pi}{3} + 2\pi n) = \frac{\sqrt{3}}{2}$. The answer is $\boxed{(C)}$.

~alexanderruan

See also

2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png