Difference between revisions of "Matrix"
Line 1: | Line 1: | ||
− | A matrix is a rectangular array of scalars from | + | A '''matrix''' over a field <math>F</math> is a [[function]] from <math>A\times B</math> to <math>F</math>, where <math>A</math> and <math>B</math> are the sets <math>A=\{1,2,\ldots,m\}</math> and <math>B=\{1,2,\ldots,n\}</math>. |
+ | A matrix is usually represented as a rectangular array of scalars from the [[field]], such that each column belongs to the [[vector space]] <math>F^m</math>, where <math>m</math> is the number of rows. If a matrix <math>A</math> has <math>m</math> rows and <math>n</math> columns, its order is said to be <math>m \times n</math>, and it is written as <math>A_{m \times n}</math>. | ||
The element in the <math>i^{th}</math> row and <math>j^{th}</math> column of <math>A</math> is written as <math>(A)_{ij}</math>. It is more often written as <math>a_{ij}</math>, in which case <math>A</math> can be written as <math>[a_{ij}]</math>. | The element in the <math>i^{th}</math> row and <math>j^{th}</math> column of <math>A</math> is written as <math>(A)_{ij}</math>. It is more often written as <math>a_{ij}</math>, in which case <math>A</math> can be written as <math>[a_{ij}]</math>. | ||
+ | ==Determinant== | ||
+ | If <math>A_{m\times n}</math> is a matrix over <math>F</math> with <math>m=n</math>, a '''Determinant''' assigns <math>A_{m\times n}</math> to a member of <math>F</math> and is denoted by <math>|A|</math> or <math>\begin{vmatrix} a_{11} & a_{12} & \ldots & a_{1n} \ a_{21} & a_{22} & \ldots & a_{2n} \ \vdots & \vdots | ||
+ | & \ddots & \vdots \ a_{n1} & a_{n2} & \ldots & a_{nn}\end{vmatrix}</math> | ||
+ | |||
+ | It is defined recursively. | ||
+ | |||
+ | <center><math> | ||
+ | |||
+ | <math>\begin{vmatrix} a_{11} & a_{12} & \ldots & a_{1n} \ a_{21} & a_{22} & \ldots & a_{2n} \ \vdots & \vdots | ||
+ | & \ddots & \vdots \ a_{n1} & a_{n2} & \ldots & a_{nn}\end{vmatrix}\dot{=}\sum_{k=1}^n (-1)^{k+1} a_{1k} |A'_{1k}|</math></center> where <math>A'_{cd}</math> is the matrix <math>A</math> with the <math>c^{th}</math> row and <math>d^{th}</math> column removed. | ||
== Transposes == | == Transposes == | ||
Line 11: | Line 22: | ||
== Matrix Product == | == Matrix Product == | ||
− | If <math>A</math> is of order <math>m_1 \times n</math> and <math>B</math> is of order <math>n \times m_2</math>, <math>C_{m_1 \times m_2}</math> is said to be <math>AB</math> if and only if <math>(C)_{ij}= | + | If <math>A</math> is of order <math>m_1 \times n</math> and <math>B</math> is of order <math>n \times m_2</math>, <math>C_{m_1 \times m_2}</math> is said to be <math>AB</math> if and only if <math>(C)_{ij}=\sum ^n _{k=1} (A)_{ik} (B)_{kj}</math> |
== Vector spaces associated with a matrix == | == Vector spaces associated with a matrix == |
Revision as of 05:30, 5 February 2008
A matrix over a field is a function from to , where and are the sets and . A matrix is usually represented as a rectangular array of scalars from the field, such that each column belongs to the vector space , where is the number of rows. If a matrix has rows and columns, its order is said to be , and it is written as .
The element in the row and column of is written as . It is more often written as , in which case can be written as .
Contents
[hide]Determinant
If is a matrix over with , a Determinant assigns to a member of and is denoted by or
It is defined recursively.
where is the matrix with the row and column removed.
Transposes
Let be . Then is said to be the transpose of , written as or simply . If A is over the complex field, replacing each element of by its complex conjugate gives us the conjugate transpose of . In other words,
is said to be symmetric if and only if . is said to be hermitian if and only if . is said to be skew symmetric if and only if . is said to be skew hermitian if and only if .
Matrix Product
If is of order and is of order , is said to be if and only if
Vector spaces associated with a matrix
As already stated before, the columns of form a subset of . The subspace of generated by these columns is said to be the column space of , written as . Similarly, the transposes of the rows form a subset of the vector space . The subspace of generated by these is known as the row space of , written as .
implies such that
Similarly, implies such that
The set forms a subspace of , known as the null space of .
Rank and nullity
The dimension of is known as the column rank of . The dimension of is known as the row rank of . These two ranks are found to be equal, and the common value is known as the rank of .
The dimension of is known as the nullity of A.
If is a square matrix of order , then .