Difference between revisions of "1987 OIM Problems/Problem 1"

(Created page with "== Problem == Find all <math>f(x)</math> such that: <cmath>\left[ f(x) \right]^2f\left( \frac{1-x}{1+x} \right)=64x</cmath> for <math>x \ne 0</math>, <math>x \ne 1</math>, <ma...")
 
 
(One intermediate revision by one other user not shown)
Line 3: Line 3:
 
<cmath>\left[ f(x) \right]^2f\left( \frac{1-x}{1+x} \right)=64x</cmath>
 
<cmath>\left[ f(x) \right]^2f\left( \frac{1-x}{1+x} \right)=64x</cmath>
 
for <math>x \ne 0</math>, <math>x \ne 1</math>, <math>x \ne -1</math>,  
 
for <math>x \ne 0</math>, <math>x \ne 1</math>, <math>x \ne -1</math>,  
 +
 +
~translated into English by Tomas Diaz. ~orders@tomasdiaz.com
  
 
== Solution ==
 
== Solution ==
{{solution}}
+
We have the following equations:
 +
<cmath>(1) \left[ f(x) \right]^2f\left( \frac{1-x}{1+x} \right)=64x</cmath>
 +
<cmath>(2) \left[ f\left(\frac{1-x}{1+x}\right) \right]^2f\left( x \right)=64 \cdot \frac{1-x}{1+x}</cmath>
 +
Multiplying <math>(1)</math> and <math>(2)</math>, we have
 +
<cmath>(3) f(x)f\left(\frac{1-x}{1+x}\right) = 16 \cdot \sqrt[3]{x\cdot \frac{1-x}{1+x}}</cmath>
 +
Dividing <math>(1)</math> by <math>(3)</math> gives
 +
<cmath>f(x) = 4 \cdot \sqrt[3]{x^2\cdot \frac{1+x}{1-x}}</cmath>
 +
Checking to see if it works…
 +
<cmath>(1) \left[ f(x) \right]^2f\left( \frac{1-x}{1+x} \right) = 64 \cdot \sqrt[3]{x^4 \cdot \left(\frac{1+x}{1-x}\right)^2 \cdot \left(\frac{1-x}{1+x}\right)^2 \cdot \frac{1}{x}} = 64x</cmath>
 +
~Archieguan
 +
 
 +
== See also ==
 +
https://www.oma.org.ar/enunciados/ibe2.htm

Latest revision as of 01:25, 23 October 2024

Problem

Find all $f(x)$ such that: \[\left[ f(x) \right]^2f\left( \frac{1-x}{1+x} \right)=64x\] for $x \ne 0$, $x \ne 1$, $x \ne -1$,

~translated into English by Tomas Diaz. ~orders@tomasdiaz.com

Solution

We have the following equations: \[(1) \left[ f(x) \right]^2f\left( \frac{1-x}{1+x} \right)=64x\] \[(2) \left[ f\left(\frac{1-x}{1+x}\right) \right]^2f\left( x \right)=64 \cdot \frac{1-x}{1+x}\] Multiplying $(1)$ and $(2)$, we have \[(3) f(x)f\left(\frac{1-x}{1+x}\right) = 16 \cdot \sqrt[3]{x\cdot \frac{1-x}{1+x}}\] Dividing $(1)$ by $(3)$ gives \[f(x) = 4 \cdot \sqrt[3]{x^2\cdot \frac{1+x}{1-x}}\] Checking to see if it works… \[(1) \left[ f(x) \right]^2f\left( \frac{1-x}{1+x} \right) = 64 \cdot \sqrt[3]{x^4 \cdot \left(\frac{1+x}{1-x}\right)^2 \cdot \left(\frac{1-x}{1+x}\right)^2 \cdot \frac{1}{x}} = 64x\] ~Archieguan

See also

https://www.oma.org.ar/enunciados/ibe2.htm