Difference between revisions of "2024 AMC 12A Problems/Problem 23"

(Created page with "==Problem== What is the value of <cmath>\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cd...")
 
Line 3: Line 3:
  
 
<math>\textbf{(A) } 28 \qquad \textbf{(B) } 68 \qquad \textbf{(C) } 70 \qquad \textbf{(D) } 72 \qquad \textbf{(E) } 84</math>
 
<math>\textbf{(A) } 28 \qquad \textbf{(B) } 68 \qquad \textbf{(C) } 70 \qquad \textbf{(D) } 72 \qquad \textbf{(E) } 84</math>
 +
 +
==Solution 1 (Trigonometric Identities)==
 +
 +
First, notice that
 +
 +
<cmath>\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16}?</cmath>
 +
 +
 +
<cmath>=(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})*(\tan^2\frac{3\pi}{16}+\tan^2 \frac{4\pi}{16})</cmath>
 +
 +
 +
Here, we make use of the fact that
 +
 +
<cmath>\tan^2 x+\tan^2 (\frac{\pi}{2}-x)</cmath>
 +
<cmath>=(\tan x+\tan (\frac{\pi}{2}-x))^2-2</cmath>
 +
<cmath>=\left(\frac{\sin x}{\cos x}+\frac{\sin (\frac{\pi}{2}-x)}{\cos (\frac{\pi}{2}-x)}\right)^2-2</cmath>
 +
<cmath>=\left(frac{\sin x \cos (\frac{\pi}{2}-x)+\sin (\frac{\pi}{2}-x) \cos x}{\cos x \cos (\frac{\pi}{2}-x)}\right)^2-2</cmath>
 +
<cmath>=\left(frac{\sin \frac{pi}{2}}{\cos x \cos (\frac{\pi}{2}-x)}\right)^2-2</cmath>
 +
<cmath>=\left(\frac{1}{\cos x \sin x}\right)^2-2</cmath>
 +
<cmath>=\left(\frac{2}{\sin 2x}\right)^2-2</cmath>
 +
<cmath>=\frac{4}{\sin^2 2x}-2</cmath>
 +
 +
Hence,
 +
 +
<cmath>(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})*(\tan^2\frac{3\pi}{16}+\tan^2 \frac{4\pi}{16})</cmath>
 +
<cmath>=(\frac{4}{\sin^2 \frac{\pi}{8}}-2)(\frac{4}{\sin^2 \frac{3\pi}{8}}-2)</cmath>
 +
 +
Note that
 +
 +
<cmath>\sin^2 \frac{\pi}{8}=\frac{1-\cos frac{\pi}{4}}{2}=\frac{2-\sqrt{2}}{4}</cmath>
 +
 +
and
 +
 +
<cmath>\sin^2 \frac{3\pi}{8}=\frac{1-\cos frac{3\pi}{4}}{2}\frac{2+\sqrt{2}}{4}</cmath>
 +
 +
Hence,
 +
 +
<cmath>(\frac{4}{\sin^2 \frac{\pi}{8}}-2)(\frac{4}{\sin^2 \frac{3\pi}{8}}-2)</cmath>
 +
 +
<cmath>=(\frac{16}{2-\sqrt{2}}-2)(\frac{16}{2+\sqrt{2}}-2)</cmath>
 +
 +
<cmath>=(14+8\sqrt{2})(14-8\sqrt{2})</cmath>
 +
 +
<cmath>=68</cmath>
 +
 +
Therefore, the answer is \fbox{\textbf{(B) } 68}.
 +
 +
~tsun26
 +
  
 
==See also==
 
==See also==
 
{{AMC12 box|year=2024|ab=A|num-b=22|num-a=24}}
 
{{AMC12 box|year=2024|ab=A|num-b=22|num-a=24}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 19:48, 8 November 2024

Problem

What is the value of \[\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16}?\]

$\textbf{(A) } 28 \qquad \textbf{(B) } 68 \qquad \textbf{(C) } 70 \qquad \textbf{(D) } 72 \qquad \textbf{(E) } 84$

Solution 1 (Trigonometric Identities)

First, notice that

\[\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16}?\]


\[=(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})*(\tan^2\frac{3\pi}{16}+\tan^2 \frac{4\pi}{16})\]


Here, we make use of the fact that

\[\tan^2 x+\tan^2 (\frac{\pi}{2}-x)\] \[=(\tan x+\tan (\frac{\pi}{2}-x))^2-2\] \[=\left(\frac{\sin x}{\cos x}+\frac{\sin (\frac{\pi}{2}-x)}{\cos (\frac{\pi}{2}-x)}\right)^2-2\] \[=\left(frac{\sin x \cos (\frac{\pi}{2}-x)+\sin (\frac{\pi}{2}-x) \cos x}{\cos x \cos (\frac{\pi}{2}-x)}\right)^2-2\] \[=\left(frac{\sin \frac{pi}{2}}{\cos x \cos (\frac{\pi}{2}-x)}\right)^2-2\] \[=\left(\frac{1}{\cos x \sin x}\right)^2-2\] \[=\left(\frac{2}{\sin 2x}\right)^2-2\] \[=\frac{4}{\sin^2 2x}-2\]

Hence,

\[(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})*(\tan^2\frac{3\pi}{16}+\tan^2 \frac{4\pi}{16})\] \[=(\frac{4}{\sin^2 \frac{\pi}{8}}-2)(\frac{4}{\sin^2 \frac{3\pi}{8}}-2)\]

Note that

\[\sin^2 \frac{\pi}{8}=\frac{1-\cos frac{\pi}{4}}{2}=\frac{2-\sqrt{2}}{4}\]

and

\[\sin^2 \frac{3\pi}{8}=\frac{1-\cos frac{3\pi}{4}}{2}\frac{2+\sqrt{2}}{4}\]

Hence,

\[(\frac{4}{\sin^2 \frac{\pi}{8}}-2)(\frac{4}{\sin^2 \frac{3\pi}{8}}-2)\]

\[=(\frac{16}{2-\sqrt{2}}-2)(\frac{16}{2+\sqrt{2}}-2)\]

\[=(14+8\sqrt{2})(14-8\sqrt{2})\]

\[=68\]

Therefore, the answer is \fbox{\textbf{(B) } 68}.

~tsun26


See also

2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png