Difference between revisions of "2024 AMC 12A Problems/Problem 10"
(→Solution 2) |
m (→Solution 1) |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 4: | Line 4: | ||
<math>\textbf{(A) }\frac{\alpha}{3}\qquad \textbf{(B) }\alpha - \frac{\pi}{8}\qquad \textbf{(C) }\frac{\pi}{2} - 2\alpha \qquad \textbf{(D) }\frac{\alpha}{2}\qquad \textbf{(E) }\pi - 4\alpha\qquad</math> | <math>\textbf{(A) }\frac{\alpha}{3}\qquad \textbf{(B) }\alpha - \frac{\pi}{8}\qquad \textbf{(C) }\frac{\pi}{2} - 2\alpha \qquad \textbf{(D) }\frac{\alpha}{2}\qquad \textbf{(E) }\pi - 4\alpha\qquad</math> | ||
==Solution 1== | ==Solution 1== | ||
− | From question, | + | From the question, |
− | <cmath>tan\alpha=\frac{3}{4}, \space tan\beta=\frac{7}{24}</cmath> | + | <cmath>\tan\alpha=\frac{3}{4}, \space \tan\beta=\frac{7}{24}</cmath> |
− | <cmath>tan(\alpha+\beta)= \frac{tan\alpha+tan\beta}{1-tan\alpha tan\beta}</cmath> | + | <cmath>\tan(\alpha+\beta)= \frac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}</cmath> |
− | <cmath>tan(\alpha+\beta)= \frac{\frac{3}{4}+\frac{7}{24}}{1-\frac{3}{4} \cdot \frac{7}{24}}</cmath> | + | <cmath>\tan(\alpha+\beta)= \frac{\frac{3}{4}+\frac{7}{24}}{1-\frac{3}{4} \cdot \frac{7}{24}}</cmath> |
− | <cmath>tan(\alpha+\beta)=\frac{4}{3}</cmath> | + | <cmath>\tan(\alpha+\beta)=\frac{4}{3}</cmath> |
− | <cmath>\alpha+\beta=tan^{-1}(\frac{4}{3})</cmath> | + | <cmath>\alpha+\beta=\tan^{-1}(\frac{4}{3})</cmath> |
<cmath>\alpha+\beta=\frac{\pi}{2}-\alpha</cmath> | <cmath>\alpha+\beta=\frac{\pi}{2}-\alpha</cmath> | ||
− | < | + | <cmath>\beta=\boxed{(C) \frac{\pi}{2} -2\alpha}</cmath> |
~lptoggled | ~lptoggled | ||
− | |||
==Solution 2: Trial and Error == | ==Solution 2: Trial and Error == | ||
Another approach to solving this problem is trial and error, comparing the sine of the answer choices with <math>\sin\beta = \frac{7}{25}</math>. Starting with the easiest sine to compute from the answer choices (option choice D). We get: | Another approach to solving this problem is trial and error, comparing the sine of the answer choices with <math>\sin\beta = \frac{7}{25}</math>. Starting with the easiest sine to compute from the answer choices (option choice D). We get: | ||
− | <cmath>\sin{(\frac{\alpha}{2})} = \sqrt{\frac{1 - \cos\alpha}{2}}</cmath> | + | <cmath>\sin{(\frac{\alpha}{2})} = \sqrt{\frac{1 - \cos{\alpha}}{2}}</cmath> |
<cmath>= \sqrt{\frac{1 - \frac{4}{5}}{2}}</cmath> | <cmath>= \sqrt{\frac{1 - \frac{4}{5}}{2}}</cmath> | ||
<cmath>= \sqrt{\frac{1}{10}}</cmath> | <cmath>= \sqrt{\frac{1}{10}}</cmath> | ||
Line 23: | Line 22: | ||
The next easiest sine to compute is option choice C. | The next easiest sine to compute is option choice C. | ||
− | <cmath>\sin(\frac{\pi}{2} - 2\alpha) | + | <cmath>\sin{(\frac{\pi}{2} - 2\alpha)} = \sin{(\frac{\pi}{2})}\cos{(2\alpha)}</cmath> |
<cmath>=\cos{2\alpha}</cmath> | <cmath>=\cos{2\alpha}</cmath> | ||
<cmath>=\cos^2{\alpha} - \sin^2{\alpha}</cmath> | <cmath>=\cos^2{\alpha} - \sin^2{\alpha}</cmath> | ||
Line 29: | Line 28: | ||
<cmath>=\frac{7}{25}</cmath> | <cmath>=\frac{7}{25}</cmath> | ||
− | Since <math>\sin(\frac{\pi}{2} - 2\alpha)</math> is equal to <math>\sin\beta</math>, option choice C is the correct answer. | + | Since <math>\sin(\frac{\pi}{2} - 2\alpha)</math> is equal to <math>\sin\beta</math>, option choice C is the correct answer. ~amshah |
==See also== | ==See also== | ||
{{AMC12 box|year=2024|ab=A|num-b=9|num-a=11}} | {{AMC12 box|year=2024|ab=A|num-b=9|num-a=11}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 19:57, 8 November 2024
Problem
Let be the radian measure of the smallest angle in a right triangle. Let be the radian measure of the smallest angle in a right triangle. In terms of , what is ?
Solution 1
From the question, ~lptoggled
Solution 2: Trial and Error
Another approach to solving this problem is trial and error, comparing the sine of the answer choices with . Starting with the easiest sine to compute from the answer choices (option choice D). We get:
The next easiest sine to compute is option choice C.
Since is equal to , option choice C is the correct answer. ~amshah
See also
2024 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 9 |
Followed by Problem 11 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.