Difference between revisions of "2024 AMC 12A Problems/Problem 23"

(Solution 1 (Trigonometric Identities))
(Solution 1 (Trigonometric Identities))
Line 7: Line 7:
  
 
First, notice that
 
First, notice that
\[
+
\begin{align*}
\tan^2 \frac{\pi}{16} \cdot \tan^2 \frac{3\pi}{16} + \tan^2 \frac{\pi}{16} \cdot \tan^2 \frac{5\pi}{16} + \tan^2 \frac{3\pi}{16} \cdot \tan^2 \frac{7\pi}{16} + \tan^2 \frac{5\pi}{16} \cdot \tan^2 \frac{7\pi}{16}
+
&\tan^2 \frac{\pi}{16} \cdot \tan^2 \frac{3\pi}{16} + \tan^2 \frac{\pi}{16} \cdot \tan^2 \frac{5\pi}{16} + \tan^2 \frac{3\pi}{16} \cdot \tan^2 \frac{7\pi}{16} + \tan^2 \frac{5\pi}{16} \cdot \tan^2 \frac{7\pi}{16} \\
\]
+
&= \left( \tan^2 \frac{\pi}{16} + \tan^2 \frac{7\pi}{16} \right) \cdot \left( \tan^2 \frac{3\pi}{16} + \tan^2 \frac{5\pi}{16} \right)
can be rewritten as
+
\end{align*}
\[
 
= \left( \tan^2 \frac{\pi}{16} + \tan^2 \frac{7\pi}{16} \right) \cdot \left( \tan^2 \frac{3\pi}{16} + \tan^2 \frac{5\pi}{16} \right)
 
\]
 
  
 
Here, we use the identity
 
Here, we use the identity
\[
+
\begin{align*}
\tan^2 x + \tan^2 \left( \frac{\pi}{2} - x \right) = \left( \tan x + \tan \left( \frac{\pi}{2} - x \right) \right)^2 - 2
+
\tan^2 x + \tan^2 \left( \frac{\pi}{2} - x \right) &= \left( \tan x + \tan \left( \frac{\pi}{2} - x \right) \right)^2 - 2 \\
\]
+
&= \left( \frac{\sin x}{\cos x} + \frac{\sin \left( \frac{\pi}{2} - x \right)}{\cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2 \\
to rewrite this as
+
&= \left( \frac{\sin x \cos \left( \frac{\pi}{2} - x \right) + \sin \left( \frac{\pi}{2} - x \right) \cos x}{\cos x \cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2 \\
\[
+
&= \left( \frac{\sin \frac{\pi}{2}}{\cos x \cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2 \\
= \left( \frac{\sin x}{\cos x} + \frac{\sin \left( \frac{\pi}{2} - x \right)}{\cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2
+
&= \left( \frac{1}{\cos x \sin x} \right)^2 - 2 \\
\]
+
&= \left( \frac{2}{\sin 2x} \right)^2 - 2 \\
\[
+
&= \frac{4}{\sin^2 2x} - 2
= \left( \frac{\sin x \cos \left( \frac{\pi}{2} - x \right) + \sin \left( \frac{\pi}{2} - x \right) \cos x}{\cos x \cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2
+
\end{align*}
\]
 
\[
 
= \left( \frac{\sin \frac{\pi}{2}}{\cos x \cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2
 
\]
 
\[
 
= \left( \frac{1}{\cos x \sin x} \right)^2 - 2
 
\]
 
\[
 
= \left( \frac{2}{\sin 2x} \right)^2 - 2
 
\]
 
\[
 
= \frac{4}{\sin^2 2x} - 2
 
\]
 
  
 
Hence,
 
Hence,
\[
+
\begin{align*}
\left( \tan^2 \frac{\pi}{16} + \tan^2 \frac{7\pi}{16} \right) \cdot \left( \tan^2 \frac{3\pi}{16} + \tan^2 \frac{5\pi}{16} \right) = \left( \frac{4}{\sin^2 \frac{\pi}{8}} - 2 \right) \left( \frac{4}{\sin^2 \frac{3\pi}{8}} - 2 \right)
+
\left( \tan^2 \frac{\pi}{16} + \tan^2 \frac{7\pi}{16} \right) \cdot \left( \tan^2 \frac{3\pi}{16} + \tan^2 \frac{5\pi}{16} \right) &= \left( \frac{4}{\sin^2 \frac{\pi}{8}} - 2 \right) \left( \frac{4}{\sin^2 \frac{3\pi}{8}} - 2 \right)
\]
+
\end{align*}
  
 
Note that
 
Note that
\[
+
\begin{align*}
\sin^2 \frac{\pi}{8} = \frac{1 - \cos \frac{\pi}{4}}{2} = \frac{2 - \sqrt{2}}{4}
+
\sin^2 \frac{\pi}{8} &= \frac{1 - \cos \frac{\pi}{4}}{2} = \frac{2 - \sqrt{2}}{4} \\
\]
+
\sin^2 \frac{3\pi}{8} &= \frac{1 - \cos \frac{3\pi}{4}}{2} = \frac{2 + \sqrt{2}}{4}
and
+
\end{align*}
\[
 
\sin^2 \frac{3\pi}{8} = \frac{1 - \cos \frac{3\pi}{4}}{2} = \frac{2 + \sqrt{2}}{4}
 
\]
 
  
 
Thus,
 
Thus,
\[
+
\begin{align*}
\left( \frac{4}{\sin^2 \frac{\pi}{8}} - 2 \right) \left( \frac{4}{\sin^2 \frac{3\pi}{8}} - 2 \right) = \left( \frac{16}{2 - \sqrt{2}} - 2 \right) \left( \frac{16}{2 + \sqrt{2}} - 2 \right)
+
\left( \frac{4}{\sin^2 \frac{\pi}{8}} - 2 \right) \left( \frac{4}{\sin^2 \frac{3\pi}{8}} - 2 \right) &= \left( \frac{16}{2 - \sqrt{2}} - 2 \right) \left( \frac{16}{2 + \sqrt{2}} - 2 \right) \\
\]
+
&= (14 + 8\sqrt{2})(14 - 8\sqrt{2}) \\
 
+
&= 68
Simplifying,
+
\end{align*}
\[
 
= (14 + 8\sqrt{2})(14 - 8\sqrt{2}) = 68
 
\]
 
  
 
Therefore, the answer is \(\boxed{\textbf{(B) } 68}\).
 
Therefore, the answer is \(\boxed{\textbf{(B) } 68}\).

Revision as of 19:59, 8 November 2024

Problem

What is the value of \[\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16}?\]

$\textbf{(A) } 28 \qquad \textbf{(B) } 68 \qquad \textbf{(C) } 70 \qquad \textbf{(D) } 72 \qquad \textbf{(E) } 84$

Solution 1 (Trigonometric Identities)

First, notice that \begin{align*} &\tan^2 \frac{\pi}{16} \cdot \tan^2 \frac{3\pi}{16} + \tan^2 \frac{\pi}{16} \cdot \tan^2 \frac{5\pi}{16} + \tan^2 \frac{3\pi}{16} \cdot \tan^2 \frac{7\pi}{16} + \tan^2 \frac{5\pi}{16} \cdot \tan^2 \frac{7\pi}{16} \\ &= \left( \tan^2 \frac{\pi}{16} + \tan^2 \frac{7\pi}{16} \right) \cdot \left( \tan^2 \frac{3\pi}{16} + \tan^2 \frac{5\pi}{16} \right) \end{align*}

Here, we use the identity \begin{align*} \tan^2 x + \tan^2 \left( \frac{\pi}{2} - x \right) &= \left( \tan x + \tan \left( \frac{\pi}{2} - x \right) \right)^2 - 2 \\ &= \left( \frac{\sin x}{\cos x} + \frac{\sin \left( \frac{\pi}{2} - x \right)}{\cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2 \\ &= \left( \frac{\sin x \cos \left( \frac{\pi}{2} - x \right) + \sin \left( \frac{\pi}{2} - x \right) \cos x}{\cos x \cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2 \\ &= \left( \frac{\sin \frac{\pi}{2}}{\cos x \cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2 \\ &= \left( \frac{1}{\cos x \sin x} \right)^2 - 2 \\ &= \left( \frac{2}{\sin 2x} \right)^2 - 2 \\ &= \frac{4}{\sin^2 2x} - 2 \end{align*}

Hence, \begin{align*} \left( \tan^2 \frac{\pi}{16} + \tan^2 \frac{7\pi}{16} \right) \cdot \left( \tan^2 \frac{3\pi}{16} + \tan^2 \frac{5\pi}{16} \right) &= \left( \frac{4}{\sin^2 \frac{\pi}{8}} - 2 \right) \left( \frac{4}{\sin^2 \frac{3\pi}{8}} - 2 \right) \end{align*}

Note that \begin{align*} \sin^2 \frac{\pi}{8} &= \frac{1 - \cos \frac{\pi}{4}}{2} = \frac{2 - \sqrt{2}}{4} \\ \sin^2 \frac{3\pi}{8} &= \frac{1 - \cos \frac{3\pi}{4}}{2} = \frac{2 + \sqrt{2}}{4} \end{align*}

Thus, \begin{align*} \left( \frac{4}{\sin^2 \frac{\pi}{8}} - 2 \right) \left( \frac{4}{\sin^2 \frac{3\pi}{8}} - 2 \right) &= \left( \frac{16}{2 - \sqrt{2}} - 2 \right) \left( \frac{16}{2 + \sqrt{2}} - 2 \right) \\ &= (14 + 8\sqrt{2})(14 - 8\sqrt{2}) \\ &= 68 \end{align*}

Therefore, the answer is \(\boxed{\textbf{(B) } 68}\).

See also

2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png