Difference between revisions of "2024 AMC 12A Problems/Problem 23"

(Solution 1 (Trigonometric Identities))
(Solution 1 (Trigonometric Identities))
Line 4: Line 4:
 
<math>\textbf{(A) } 28 \qquad \textbf{(B) } 68 \qquad \textbf{(C) } 70 \qquad \textbf{(D) } 72 \qquad \textbf{(E) } 84</math>
 
<math>\textbf{(A) } 28 \qquad \textbf{(B) } 68 \qquad \textbf{(C) } 70 \qquad \textbf{(D) } 72 \qquad \textbf{(E) } 84</math>
  
==Solution 1 (Trigonometric Identities)==
+
==Solution 1 (Trigonometric Identities)==
  
 
First, notice that
 
First, notice that
\begin{align*}
 
&\tan^2 \frac{\pi}{16} \cdot \tan^2 \frac{3\pi}{16} + \tan^2 \frac{\pi}{16} \cdot \tan^2 \frac{5\pi}{16} + \tan^2 \frac{3\pi}{16} \cdot \tan^2 \frac{7\pi}{16} + \tan^2 \frac{5\pi}{16} \cdot \tan^2 \frac{7\pi}{16} \\
 
&= \left( \tan^2 \frac{\pi}{16} + \tan^2 \frac{7\pi}{16} \right) \cdot \left( \tan^2 \frac{3\pi}{16} + \tan^2 \frac{5\pi}{16} \right)
 
\end{align*}
 
  
Here, we use the identity
+
<cmath>\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16}?</cmath>
\begin{align*}
+
 
\tan^2 x + \tan^2 \left( \frac{\pi}{2} - x \right) &= \left( \tan x + \tan \left( \frac{\pi}{2} - x \right) \right)^2 - 2 \\
+
 
&= \left( \frac{\sin x}{\cos x} + \frac{\sin \left( \frac{\pi}{2} - x \right)}{\cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2 \\
+
<cmath>=(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})*(\tan^2\frac{3\pi}{16}+\tan^2 \frac{4\pi}{16})</cmath>
&= \left( \frac{\sin x \cos \left( \frac{\pi}{2} - x \right) + \sin \left( \frac{\pi}{2} - x \right) \cos x}{\cos x \cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2 \\
+
 
&= \left( \frac{\sin \frac{\pi}{2}}{\cos x \cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2 \\
+
 
&= \left( \frac{1}{\cos x \sin x} \right)^2 - 2 \\
+
Here, we make use of the fact that
&= \left( \frac{2}{\sin 2x} \right)^2 - 2 \\
+
 
&= \frac{4}{\sin^2 2x} - 2
+
<cmath>\tan^2 x+\tan^2 (\frac{\pi}{2}-x)</cmath>
\end{align*}
+
<cmath>=(\tan x+\tan (\frac{\pi}{2}-x))^2-2</cmath>
 +
<cmath>=\left(\frac{\sin x}{\cos x}+\frac{\sin (\frac{\pi}{2}-x)}{\cos (\frac{\pi}{2}-x)}\right)^2-2</cmath>
 +
<cmath>=\left(\frac{\sin x \cos (\frac{\pi}{2}-x)+\sin (\frac{\pi}{2}-x) \cos x}{\cos x \cos (\frac{\pi}{2}-x)}\right)^2-2</cmath>
 +
<cmath>=\left(\frac{\sin \frac{\pi}{2}}{\cos x \cos (\frac{\pi}{2}-x)}\right)^2-2</cmath>
 +
<cmath>=\left(\frac{1}{\cos x \sin x}\right)^2-2</cmath>
 +
<cmath>=\left(\frac{2}{\sin 2x}\right)^2-2</cmath>
 +
<cmath>=\frac{4}{\sin^2 2x}-2</cmath>
  
 
Hence,
 
Hence,
\begin{align*}
 
\left( \tan^2 \frac{\pi}{16} + \tan^2 \frac{7\pi}{16} \right) \cdot \left( \tan^2 \frac{3\pi}{16} + \tan^2 \frac{5\pi}{16} \right) &= \left( \frac{4}{\sin^2 \frac{\pi}{8}} - 2 \right) \left( \frac{4}{\sin^2 \frac{3\pi}{8}} - 2 \right)
 
\end{align*}
 
  
Note that
+
<cmath>(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})*(\tan^2\frac{3\pi}{16}+\tan^2 \frac{4\pi}{16})</cmath>
\begin{align*}
+
<cmath>=\left(\frac{4}{\sin^2 \frac{\pi}{8}}-2\right)\left(\frac{4}{\sin^2 \frac{3\pi}{8}}-2\right)</cmath>
\sin^2 \frac{\pi}{8} &= \frac{1 - \cos \frac{\pi}{4}}{2} = \frac{2 - \sqrt{2}}{4} \\
+
 
\sin^2 \frac{3\pi}{8} &= \frac{1 - \cos \frac{3\pi}{4}}{2} = \frac{2 + \sqrt{2}}{4}
+
Note that
\end{align*}
+
 
 +
<cmath>\sin^2 \frac{\pi}{8}=\frac{1-\cos \frac{\pi}{4}}{2}=\frac{2-\sqrt{2}}{4}</cmath>
 +
 
 +
and
 +
 
 +
<cmath>\sin^2 \frac{3\pi}{8}=\frac{1-\cos \frac{3\pi}{4}}{2}=\frac{2+\sqrt{2}}{4}</cmath>
 +
 
 +
Hence,
 +
 
 +
<cmath>\left(\frac{4}{\sin^2 \frac{\pi}{8}}-2\right)\left(\frac{4}{\sin^2 \frac{3\pi}{8}}-2\right)</cmath>
 +
 
 +
<cmath>=\left(\frac{16}{2-\sqrt{2}}-2\right)\left(\frac{16}{2+\sqrt{2}}-2\right)</cmath>
 +
 
 +
<cmath>=(14+8\sqrt{2})(14-8\sqrt{2})</cmath>
 +
 
 +
<cmath>=68</cmath>
  
Thus,
+
Therefore, the answer is <math>\fbox{\textbf{(B) } 68}</math>.
\begin{align*}
 
\left( \frac{4}{\sin^2 \frac{\pi}{8}} - 2 \right) \left( \frac{4}{\sin^2 \frac{3\pi}{8}} - 2 \right) &= \left( \frac{16}{2 - \sqrt{2}} - 2 \right) \left( \frac{16}{2 + \sqrt{2}} - 2 \right) \\
 
&= (14 + 8\sqrt{2})(14 - 8\sqrt{2}) \\
 
&= 68
 
\end{align*}
 
  
Therefore, the answer is \(\boxed{\textbf{(B) } 68}\).
+
~tsun26
  
 
==See also==
 
==See also==
 
{{AMC12 box|year=2024|ab=A|num-b=22|num-a=24}}
 
{{AMC12 box|year=2024|ab=A|num-b=22|num-a=24}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 20:03, 8 November 2024

Problem

What is the value of \[\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16}?\]

$\textbf{(A) } 28 \qquad \textbf{(B) } 68 \qquad \textbf{(C) } 70 \qquad \textbf{(D) } 72 \qquad \textbf{(E) } 84$

==Solution 1 (Trigonometric Identities)==

First, notice that

\[\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16}?\]


\[=(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})*(\tan^2\frac{3\pi}{16}+\tan^2 \frac{4\pi}{16})\]


Here, we make use of the fact that

\[\tan^2 x+\tan^2 (\frac{\pi}{2}-x)\] \[=(\tan x+\tan (\frac{\pi}{2}-x))^2-2\] \[=\left(\frac{\sin x}{\cos x}+\frac{\sin (\frac{\pi}{2}-x)}{\cos (\frac{\pi}{2}-x)}\right)^2-2\] \[=\left(\frac{\sin x \cos (\frac{\pi}{2}-x)+\sin (\frac{\pi}{2}-x) \cos x}{\cos x \cos (\frac{\pi}{2}-x)}\right)^2-2\] \[=\left(\frac{\sin \frac{\pi}{2}}{\cos x \cos (\frac{\pi}{2}-x)}\right)^2-2\] \[=\left(\frac{1}{\cos x \sin x}\right)^2-2\] \[=\left(\frac{2}{\sin 2x}\right)^2-2\] \[=\frac{4}{\sin^2 2x}-2\]

Hence,

\[(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})*(\tan^2\frac{3\pi}{16}+\tan^2 \frac{4\pi}{16})\] \[=\left(\frac{4}{\sin^2 \frac{\pi}{8}}-2\right)\left(\frac{4}{\sin^2 \frac{3\pi}{8}}-2\right)\]

Note that

\[\sin^2 \frac{\pi}{8}=\frac{1-\cos \frac{\pi}{4}}{2}=\frac{2-\sqrt{2}}{4}\]

and

\[\sin^2 \frac{3\pi}{8}=\frac{1-\cos \frac{3\pi}{4}}{2}=\frac{2+\sqrt{2}}{4}\]

Hence,

\[\left(\frac{4}{\sin^2 \frac{\pi}{8}}-2\right)\left(\frac{4}{\sin^2 \frac{3\pi}{8}}-2\right)\]

\[=\left(\frac{16}{2-\sqrt{2}}-2\right)\left(\frac{16}{2+\sqrt{2}}-2\right)\]

\[=(14+8\sqrt{2})(14-8\sqrt{2})\]

\[=68\]

Therefore, the answer is $\fbox{\textbf{(B) } 68}$.

~tsun26

See also

2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png