Difference between revisions of "2024 AMC 12A Problems/Problem 23"
(→Problem) |
(→Solution 1 (Trigonometric Identities)) |
||
Line 8: | Line 8: | ||
First, notice that | First, notice that | ||
− | <cmath>\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16} | + | <cmath>\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16}</cmath> |
− | <cmath>=(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16}) | + | <cmath>=(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{4\pi}{16})</cmath> |
Line 27: | Line 27: | ||
Hence, | Hence, | ||
− | <cmath>(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16}) | + | <cmath>(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{4\pi}{16})</cmath> |
<cmath>=\left(\frac{4}{\sin^2 \frac{\pi}{8}}-2\right)\left(\frac{4}{\sin^2 \frac{3\pi}{8}}-2\right)</cmath> | <cmath>=\left(\frac{4}{\sin^2 \frac{\pi}{8}}-2\right)\left(\frac{4}{\sin^2 \frac{3\pi}{8}}-2\right)</cmath> | ||
Revision as of 20:06, 8 November 2024
Problem
What is the value of
Solution 1 (Trigonometric Identities)
First, notice that
Here, we make use of the fact that
Hence,
Note that
and
Hence,
Therefore, the answer is .
~tsun26
See also
2024 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.