Difference between revisions of "Mock AIME 3 Pre 2005 Problems/Problem 15"

 
Line 1: Line 1:
<math>15.</math> Let <math>\Omega</math> denote the value of the sum
+
==Problem==
 +
Let <math>\Omega</math> denote the value of the sum
  
 
<math>\sum_{k=1}^{40} \cos^{-1}\left(\frac{k^2 + k + 1}{\sqrt{k^4 + 2k^3 + 3k^2 + 2k + 2}}\right)</math>
 
<math>\sum_{k=1}^{40} \cos^{-1}\left(\frac{k^2 + k + 1}{\sqrt{k^4 + 2k^3 + 3k^2 + 2k + 2}}\right)</math>
  
 
The value of <math>\tan\left(\Omega\right)</math> can be expressed as <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Compute <math>m + n</math>.
 
The value of <math>\tan\left(\Omega\right)</math> can be expressed as <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Compute <math>m + n</math>.
 +
 +
==Solution==
 +
{{solution}}
 +
 +
==See also==

Revision as of 07:29, 14 February 2008

Problem

Let $\Omega$ denote the value of the sum

$\sum_{k=1}^{40} \cos^{-1}\left(\frac{k^2 + k + 1}{\sqrt{k^4 + 2k^3 + 3k^2 + 2k + 2}}\right)$

The value of $\tan\left(\Omega\right)$ can be expressed as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Compute $m + n$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also