Difference between revisions of "Gauge"

(New page: A '''Gauge''' is a more accurate way to 'measure' a partition that its norm. A Gauge is essentially a strictly positive function defined on an interval. ==Definition== A f...)
 
m (Typos and see also)
 
Line 6: Line 6:
 
A funcion <math>\delta:[a,b]\rightarrow\mathbb{R}</math> is said to be a '''Gauge''' on <math>[a,b]</math> if <math>\delta(x)>0\forall x\in[a,b]</math>
 
A funcion <math>\delta:[a,b]\rightarrow\mathbb{R}</math> is said to be a '''Gauge''' on <math>[a,b]</math> if <math>\delta(x)>0\forall x\in[a,b]</math>
  
A [[Partition of an interval|tagged partition]] <math>\mathcal{\dot{P}}=\{([x_{i-1},x_i],t_i)\}_{i=1}^n,</math> is said to be <i><math>\delta</math>-fine</i> on <math>[a,b]</math> if <math>[x_{i-1},x_i]\subset(t_i-\delta(t_i),t_i+\delta(t_i))  
+
A [[Partition of an interval|tagged partition]] <math>\mathcal{\dot{P}}=\{([x_{i-1},x_i],t_i)\}_{i=1}^n,</math> is said to be <i><math>\delta</math>-fine</i> on <math>[a,b]</math> if <math>[x_{i-1},x_i]\subset(t_i-\delta(t_i),t_i+\delta(t_i))</math>
  
The statement that a </math>\delta<math>-fine partition exists for evey gauge </math>\delta$ is true, but is not trivial.
+
The statement that a <math>\delta</math>-fine partition exists for evey gauge <math>\delta</math> is true, but is not trivial.
 +
 
 +
==See Also==
 +
*[[Henstock-Kurzweil integral]]
 +
*[[Continuity]]
  
 
{{stub}}
 
{{stub}}

Latest revision as of 08:53, 16 February 2008

A Gauge is a more accurate way to 'measure' a partition that its norm.

A Gauge is essentially a strictly positive function defined on an interval.

Definition

A funcion $\delta:[a,b]\rightarrow\mathbb{R}$ is said to be a Gauge on $[a,b]$ if $\delta(x)>0\forall x\in[a,b]$

A tagged partition $\mathcal{\dot{P}}=\{([x_{i-1},x_i],t_i)\}_{i=1}^n,$ is said to be $\delta$-fine on $[a,b]$ if $[x_{i-1},x_i]\subset(t_i-\delta(t_i),t_i+\delta(t_i))$

The statement that a $\delta$-fine partition exists for evey gauge $\delta$ is true, but is not trivial.

See Also

This article is a stub. Help us out by expanding it.