Difference between revisions of "2024 AMC 10B Problems/Problem 6"
m (Protected "2024 AMC 10B Problems/Problem 6" ([Edit=Allow only administrators] (expires 04:59, 14 November 2024 (UTC)) [Move=Allow only administrators] (expires 04:59, 14 November 2024 (UTC)))) |
|||
Line 1: | Line 1: | ||
− | + | ==Problem== | |
+ | A rectangle has integer length sides and an area of 2024. What is the least possible perimeter of the rectangle? | ||
+ | |||
+ | <math>\textbf{(A) } 160 \qquad\textbf{(B) } 15 \qquad\textbf{(C) } 16 \qquad\textbf{(D) } 17 \qquad\textbf{(E) } 18</math> | ||
+ | |||
+ | ==Solution 1== | ||
+ | |||
+ | B) 180, 2024=44*46, (44+46)*2=180. | ||
+ | |||
+ | ==See also== | ||
+ | {{AMC10 box|year=2024|ab=B|num-b=5|num-a=7}} | ||
+ | {{MAA Notice}} |
Revision as of 00:41, 14 November 2024
Problem
A rectangle has integer length sides and an area of 2024. What is the least possible perimeter of the rectangle?
Solution 1
B) 180, 2024=44*46, (44+46)*2=180.
See also
2024 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.