Difference between revisions of "2024 AMC 12B Problems/Problem 17"

(Created page with "==Solution 1== -10<= a, b <= 10 , a,b has 21 choices per Vieta, x1x2x3 = -6, x1 + x2+ x3 = -a , x1x2+ x2x3 + x3x1 = b Case: (1) (x1,x2,x3) = (-1,-1,6) , b = 13 not valid...")
 
(Solution 1)
Line 1: Line 1:
 +
==Problem 17==
 +
Integers <math>a</math> and <math>b</math> are randomly chosen without replacement from the set of integers with absolute value not exceeding <math>10</math>. What is the probability that the polynomial <math>x^3 + ax^2 + bx + 6</math> has <math>3</math> distinct integer roots?
 +
 +
<math>\textbf{(A)} \frac{1}{240} \qquad \textbf{(B)} \frac{1}{221} \qquad \textbf{(C)} \frac{1}{105} \qquad \textbf{(D)} \frac{1}{84} \qquad \textbf{(E)} \frac{1}{63}</math>.
 +
 +
[[2024 AMC 12B Problems/Problem 17|Solution]]
 +
 
==Solution 1==
 
==Solution 1==
  

Revision as of 00:45, 14 November 2024

Problem 17

Integers $a$ and $b$ are randomly chosen without replacement from the set of integers with absolute value not exceeding $10$. What is the probability that the polynomial $x^3 + ax^2 + bx + 6$ has $3$ distinct integer roots?

$\textbf{(A)} \frac{1}{240} \qquad \textbf{(B)} \frac{1}{221} \qquad \textbf{(C)} \frac{1}{105} \qquad \textbf{(D)} \frac{1}{84} \qquad \textbf{(E)} \frac{1}{63}$.

Solution

Solution 1

-10<= a, b <= 10 , a,b has 21 choices per Vieta, x1x2x3 = -6, x1 + x2+ x3 = -a , x1x2+ x2x3 + x3x1 = b

Case: (1) (x1,x2,x3) = (-1,-1,6) , b = 13 not valid

(2) (x1,x2,x3) = (-1,1,6) , b = -1, a=-6 valid

(3) (x1,x2,x3) = ( 1,2,-3) , b = -7, a=0 valid

(4) (x1,x2,x3) = (1,-2,3) , b = -7, a=2 valid

(5) (x1,x2,x3) = (-1,2,3) , b = 1, a=4 valid

(6) (x1,x2,x3) = (-1,-2,-3) , b = 11 invalid

probability = $\frac{4}{21*20}$ = $\frac{1}{105}$ $\boxed{\textbf{(C) }\frac{1}{105}}$

~luckuso