Difference between revisions of "AoPS Wiki:Sandbox"

m (Sandbox)
 
(164 intermediate revisions by 32 users not shown)
Line 1: Line 1:
{{AoPSWiki:Sandbox/header}} <!-- Please do not delete this line -->
+
{{/header}} <!-- Please do not delete this line -->
In the computer world, a '''sandbox''' is a place to test and experiment -- essentially, it's a place to play.
 
 
 
This is the AoPSWiki Sandbox.  Feel free to experiment here.
 
 
 
Warning: anything you place here is subject to deletion without notice.
 
 
 
== Test 0==
 
Firstly, AkshajK is awesome, and is editing this.
 
 
 
What is <math> \frac{(x+y)(2x-y)(y-x)^{2}}{(x-y)(x^{2}-y^{2})(2x-y)} ???</math>
 
 
 
 
 
<cmath>x</cmath>
 
<cmath>x</cmath>
 
What is <math> \frac{(x+y)(2x-y)(y-x)^{2}}{(x-y)(x^{2}-y^{2})(2x-y)} ???</math>
 
oh.. donnoo
 
 
 
==Test 1==
 
 
 
<asy>
 
 
 
dot((0,0));
 
dot((1,0));
 
dot((0,1));
 
dot((1,1));
 
dot((2,0));
 
dot((0,2));
 
dot((1,2));
 
dot((2,1));
 
dot((2,2));
 
dot((3,0));
 
dot((3,1));
 
dot((3,2));
 
dot((3,3));
 
dot((2,3));
 
dot((1,3));
 
dot((0,3));
 
dot((0,4));
 
dot((1,4));
 
dot((2,4));
 
dot((3,4));
 
dot((4,4));
 
dot((4,3));
 
dot((4,2));
 
dot((4,1));
 
dot((4,0));
 
dot((5,0));
 
dot((5,1));
 
dot((5,2));
 
dot((5,3));
 
dot((5,4));
 
dot((5,5));
 
dot((4,5));
 
dot((3,5));
 
dot((2,5));
 
dot((1,5));
 
dot((0,5));
 
dot((0,6));
 
dot((1,6));
 
dot((2,6));
 
dot((3,6));
 
dot((4,6));
 
dot((5,6));
 
dot((6,6));
 
dot((6,5));
 
dot((6,4));
 
dot((6,3));
 
dot((6,2));
 
dot((6,1));
 
dot((6,0));
 
dot((7,0));
 
dot((7,1));
 
dot((7,2));
 
dot((7,3));
 
dot((7,4));
 
dot((7,5));
 
dot((7,6));
 
dot((7,7));
 
dot((6,7));
 
dot((5,7));
 
dot((4,7));
 
dot((3,7));
 
dot((2,7));
 
dot((1,7));
 
dot((0,7));
 
draw((0,1)--(1,7),red);
 
draw((1,7)--(7,6),red);
 
draw((7,6)--(6,0),red);
 
draw((6,0)--(0,1),red);
 
draw((2,7)--(7,5),blue);
 
draw((0,2)--(2,7),blue);
 
draw((5,0)--(0,2),blue);
 
draw((5,0)--(7,5),blue);
 
draw((3,7)--(7,4),yellow);
 
draw((7,4)--(4,0),yellow);
 
draw((4,0)--(0,3),yellow);
 
draw((0,3)--(3,7),yellow);
 
draw((4,7)--(7,3),green);
 
draw((7,3)--(3,0),green);
 
draw((3,0)--(0,4),green);
 
draw((0,4)--(4,7),green);
 
draw((5,7)--(7,2),black);
 
draw((7,2)--(2,0),black);
 
draw((2,0)--(0,5),black);
 
draw((0,5)--(5,7),black);
 
draw((0,6)--(1,0),purple);
 
draw((1,0)--(7,1),purple);
 
draw((7,1)--(6,7),purple);
 
draw((0,6)--(6,7),purple);
 
 
 
</asy>
 
awesome
 
 
 
==Test 2==
 
<b>Test</b>
 
 
 
<asy>
 
 
 
dot((0,0));
 
dot((1,0));
 
dot((0,1));
 
dot((1,1));
 
dot((0,2));
 
dot((2,0));
 
dot((1,2));
 
dot((2,1));
 
dot((2,2));
 
dot((3,0));
 
dot((3,1));
 
dot((3,2));
 
dot((3,3));
 
dot((2,3));
 
dot((1,3));
 
dot((0,3));
 
 
 
</asy>
 
 
 
more asy!!!!!!!!!!!!
 
<asy>
 
draw((0,0)--(4,0),black);
 
draw((4,3)--(4,0),black);
 
draw((4,3)--(0,0),black);
 
dot((0,0));
 
dot((4,0));
 
dot((4,3));
 
</asy>
 
 
 
==Test 3==
 
<asy>
 
dot((0,0));
 
dot((0,4));
 
dot((3,4444));
 
dot((3,0));
 
dot((1.5,2));
 
draw((0,0)--(3,4444),green);
 
draw((0,4)--(3,0),green);
 
draw((0,0)--(0,4),red);
 
draw((0,4)--(3,4),red);
 
draw((3,0)--(3,4),red);
 
draw((3,0)--(0,0),red);
 
</asy>
 
 
 
 
 
==Test 4==
 
 
 
<asy>
 
import graph;
 
draw(Circle((0,0),20)); // graph - Circle
 
</asy>
 
 
 
==Test 5==
 
 
 
n1000 is editing this.
 
yay!
 
 
 
<asy>
 
pair A,B,C,D,E,F,G,H;
 
 
 
A=(1,0);
 
B=(2,0);
 
C=(3,1);
 
D=(3,2);
 
E=(2,3);
 
F=(1,3);
 
G=(0,2);
 
H=(0,1);
 
 
 
path octagon,square1,square2,star,bow1,bow2;
 
octagon=(A--B--C--D--E--F--G--H--cycle);
 
square1=(A--C--E--G--cycle);
 
square2=(B--D--F--H--cycle);
 
star=(A--D--G--B--E--H--C--F--cycle);
 
bow1=(A--B--F--E--cycle);
 
bow2=(C--D--H--G--cycle);
 
 
 
path[] all;
 
all=(octagon^^square1^^square2^^star^^bow1^^bow2);
 
 
 
draw(all);
 
 
 
fill(octagon,blue);
 
fill((bow1)^^(bow2),yellow);
 
fill(all,evenodd+red);
 
 
 
</asy>
 
 
 
==Test 6==
 
 
 
NeoMathematicalKid was here. And he broke the line of asy diagrams.
 
 
 
<math>\begin{align*}\sum^4_{k=1}\left(\sum^k_{j=1}kj\right)&=\sum^4_{k=1}\left(k\sum^k_{j=1}j\right)\\
 
&=\sum^4_{k=1}\left(k(1+2+\cdots +k)\right)\\
 
&=\sum^4_{k=1}(k+2k+\cdots +k^2)\\
 
&=(1)+(2+4)+(3+6+9)+(4+8+12+16)\\
 
&=1+6+18+40\\
 
&=\boxed{65}
 
\end{align*}</math>
 
 
 
What is <math>\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{e^{1\pi}}}}}}+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{20}}}}}}</math>?!?! I got carried away.
 

Latest revision as of 13:59, 22 December 2024

Shortcut:

Welcome to the sandbox, a location to test your newfound wiki-editing abilities.

Please note that all contributions here may be deleted periodically and without warning.