Difference between revisions of "2012 Indonesia MO Problems/Problem 5"

Line 12: Line 12:
  
 
let the collection X be named
 
let the collection X be named
<math>\begin{bmatrix} X_{1,1}&X_{1,2}&\dots&X_{1,n}\\X_{2,1}&X{2,2}&\dots&X_{2,n}\\\vdots&\vdots&\vdots&\vdots\\X_{m,1}&X_{m,2}&\dots&\X_{m,n}\end{bmatrix}</math>
+
<cmath>\begin{bmatrix} X_{1,1}&X_{1,2}&\dots&X_{1,n}\\X_{2,1}&X_{2,2}&\dots&X_{2,n}\\\vdots&\vdots&\vdots&\vdots\\X_{m,1}&X_{m,2}&\dots&X_{m,n}\end{bmatrix}</cmath>
 
+
since for all <math>i</math>, <math>P_{i,1}\geq P_{i,2}\geq \dots \geq P_{i,n}</math>, that means <math>(P_{1,1}+P_{2,1}+\dots+P_{m,1})\geq(P_{1,2}+P_{2,2}+\dots+P_{m,2})\geq\dots\geq(P_{1,n}+P_{2,n}+\dots+P_{m,n})\implies(Q_{1,1}+Q_{2,1}+\dots+Q_{m,1})\geq(Q_{1,2}+Q_{2,2}+\dots+Q_{m,2})\geq\dots\geq(Q_{1,n}+Q_{2,n}+\dots+Q_{m,n})</math>
 
==See Also==
 
==See Also==
 
{{Indonesia MO box|year=2012|num-b=4|num-a=6}}
 
{{Indonesia MO box|year=2012|num-b=4|num-a=6}}
  
 
[[Category:Intermediate Number Theory Problems]]
 
[[Category:Intermediate Number Theory Problems]]

Revision as of 20:49, 24 December 2024

Problem

Given positive integers $m$ and $n$. Let $P$ and $Q$ be two collections of $m \times n$ numbers of $0$ and $1$, arranged in $m$ rows and $n$ columns. An example of such collections for $m=3$ and $n=4$ is \[\left[ \begin{array}{cccc} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right].\] Let those two collections satisfy the following properties: (i) On each row of $P$, from left to right, the numbers are non-increasing, (ii) On each column of $Q$, from top to bottom, the numbers are non-increasing, (iii) The sum of numbers on the row in $P$ equals to the same row in $Q$, (iv) The sum of numbers on the column in $P$ equals to the same column in $Q$. Show that the number on row $i$ and column $j$ of $P$ equals to the number on row $i$ and column $j$ of $Q$ for $i=1,2,\dots,m$ and $j=1,2,\dots,n$.

Solution

let the collection X be named \[\begin{bmatrix} X_{1,1}&X_{1,2}&\dots&X_{1,n}\\X_{2,1}&X_{2,2}&\dots&X_{2,n}\\\vdots&\vdots&\vdots&\vdots\\X_{m,1}&X_{m,2}&\dots&X_{m,n}\end{bmatrix}\] since for all $i$, $P_{i,1}\geq P_{i,2}\geq \dots \geq P_{i,n}$, that means $(P_{1,1}+P_{2,1}+\dots+P_{m,1})\geq(P_{1,2}+P_{2,2}+\dots+P_{m,2})\geq\dots\geq(P_{1,n}+P_{2,n}+\dots+P_{m,n})\implies(Q_{1,1}+Q_{2,1}+\dots+Q_{m,1})\geq(Q_{1,2}+Q_{2,2}+\dots+Q_{m,2})\geq\dots\geq(Q_{1,n}+Q_{2,n}+\dots+Q_{m,n})$

See Also

2012 Indonesia MO (Problems)
Preceded by
Problem 4
1 2 3 4 5 6 7 8 Followed by
Problem 6
All Indonesia MO Problems and Solutions