Difference between revisions of "Number Theory Problems and Results"

m (Results)
(Results)
Line 12: Line 12:
 
<cmath>(p-1)! \equiv -1 \pmod p</cmath>
 
<cmath>(p-1)! \equiv -1 \pmod p</cmath>
  
 +
 +
'''Example:'''
 +
 +
For any prime number <math>p</math>, we have
 +
 +
<cmath>2p \choose p \equiv 2 \pmod p</cmath>
 +
 +
''Proof:''
 +
 +
<cmath>2p \choose p = \frac{(p+1) \cdot (p+2) \cdot \dots \cdot 2p}{p!}</cmath>
 +
 +
<cmath>=\frac{2 \cdot (p+1) \cdot (p+2) \cdot \dots \cdot (2p-1)}{(p-1)!}</cmath>
 +
  
 
Format's Little Theorem:
 
Format's Little Theorem:
Line 17: Line 30:
  
 
<cmath>a^{p-1} \equiv 1 \pmod p</cmath>
 
<cmath>a^{p-1} \equiv 1 \pmod p</cmath>
 +
 +
 +
Euler's (Totient) Theorem
 +
For relatively prime numbers <math>m</math> and <math>a</math>, we have
 +
 +
<cmath>a^{\phi (m)} \equiv 1 \pmod m</cmath>
  
 
==Problems==
 
==Problems==

Revision as of 21:02, 30 December 2024

This is a page where you can learn about number theory and its applications. There are important results and practice problems.

Introduction

Results

Here includes some important results for number theory.

Wilson's Theorem: For a prime number $p$, we have

\[(p-1)! \equiv -1 \pmod p\]


Example:

For any prime number $p$, we have

\[2p \choose p \equiv 2 \pmod p\]

Proof:

\[2p \choose p = \frac{(p+1) \cdot (p+2) \cdot \dots \cdot 2p}{p!}\]

\[=\frac{2 \cdot (p+1) \cdot (p+2) \cdot \dots \cdot (2p-1)}{(p-1)!}\]


Format's Little Theorem: For a prime number $p$ and integer $a$ that $p$ does not divide, we have

\[a^{p-1} \equiv 1 \pmod p\]


Euler's (Totient) Theorem For relatively prime numbers $m$ and $a$, we have

\[a^{\phi (m)} \equiv 1 \pmod m\]

Problems

1. Suppose

\[x \equiv 2^4 \cdot 3^4 \cdot 7^4+2^7 \cdot 3^7 \cdot 5^6 \pmod{7!}\]

Find the remainder when $\min{x}$ is divided by 1000.

Solution

Solution 1 to Problem 1(Euler's Totient Theorem)

We first simplify $2^4 \cdot 3^4 \cdot 7^4+2^7 \cdot 3^7 \cdot 5^6:$

\[2^4 \cdot 3^4 \cdot 7^4+2^7 \cdot 3^7 \cdot 5^6=42^4+6 \cdot 30^6=(\frac{5 \cdot 6 \cdot 7}{5})^{\phi (5)}+6\cdot (\frac{5 \cdot 6 \cdot 7}{7})^{\phi (7)}+0 \cdot (\frac{5 \cdot 6 \cdot 7}{6})^{\phi (6)}\]

so

\[x \equiv (\frac{5 \cdot 6 \cdot 7}{5})^{\phi (5)}+6\cdot (\frac{5 \cdot 6 \cdot 7}{7})^{\phi (7)}+0 \cdot (\frac{5 \cdot 6 \cdot 7}{6})^{\phi (6)} \equiv (\frac{5 \cdot 6 \cdot 7}{5})^{\phi (5)} \equiv 1 \pmod{5}\]

\[x \equiv (\frac{5 \cdot 6 \cdot 7}{5})^{\phi (5)}+6\cdot (\frac{5 \cdot 6 \cdot 7}{7})^{\phi (7)}+0 \cdot (\frac{5 \cdot 6 \cdot 7}{6})^{\phi (6)} \equiv 0 \cdot (\frac{5 \cdot 6 \cdot 7}{6})^{\phi (6)} \equiv 0 \pmod{6}\]

\[x \equiv (\frac{5 \cdot 6 \cdot 7}{5})^{\phi (5)}+6\cdot (\frac{5 \cdot 6 \cdot 7}{7})^{\phi (7)}+0 \cdot (\frac{5 \cdot 6 \cdot 7}{6})^{\phi (6)} \equiv 6 \cdot (\frac{5 \cdot 6 \cdot 7}{7})^{\phi (7)} \equiv 6 \pmod{7}\].

where the last step of all 3 congruences hold by the Euler's Totient Theorem. Hence,

\[x \equiv 1 \pmod{5}\]

\[x \equiv 0 \pmod{6}\]

\[x \equiv 6 \pmod{7}\]

Now, you can bash through solving linear congruences, but there is a smarter way. Notice that $5|x-6,6|x-6$, and $7|x-6$. Hence, $210|x-6$, so $x \equiv 6 \pmod{210}$. With this in mind, we proceed with finding $x \pmod{7!}$.

Notice that $7!=5040= \text{lcm}(144,210)$ and that $x \equiv 0 \pmod{144}$. Therefore, we obtain the system of congruences :

\[x \equiv 6 \pmod{210}\]

\[x \equiv 0 \pmod{144}\].

Solving yields $x \equiv 2\boxed{736} \pmod{7!}$, and we're done. $\square$~Ddk001

See Also