Difference between revisions of "Ultrafilter"
(finished) |
m |
||
Line 20: | Line 20: | ||
''Proof.'' By Proposition 1, if <math>\mathcal{F}</math> is trivial, it contains a finite element. Converesly, suppose <math>\mathcal{F}</math> contains a finite element <math>A</math>. Then the set of subsets of <math>A</math> which are elements of <math>\mathcal{F}</math>, ordered by inclusion, is nonempty and finite, and must have a least element. This least element must then be a least element of <math>\mathcal{F}</math>, so <math>\mathcal{F}</math> is trivial. <math>\blacksquare</math> | ''Proof.'' By Proposition 1, if <math>\mathcal{F}</math> is trivial, it contains a finite element. Converesly, suppose <math>\mathcal{F}</math> contains a finite element <math>A</math>. Then the set of subsets of <math>A</math> which are elements of <math>\mathcal{F}</math>, ordered by inclusion, is nonempty and finite, and must have a least element. This least element must then be a least element of <math>\mathcal{F}</math>, so <math>\mathcal{F}</math> is trivial. <math>\blacksquare</math> | ||
− | == | + | == Existence of Non-trivial Filters on Infinite Sets == |
We will now show that every [[infinite]] set has a non-trivial ultrafilter. | We will now show that every [[infinite]] set has a non-trivial ultrafilter. |
Revision as of 21:57, 9 April 2008
An ultrafilter is a set theoretic structure.
Contents
Definition
An ultrafilter on a set is a non-empty filter on with the following property:
- For every set , either or its complement is an element of .
An ultrafilter is a finest filter, that is, if is an ultrafilter on , then there is no filter on such that . All finest filters are also ultrafilters; we will prove this later.
Types of Ultrafilters
An ultrafilter is said to be principle, or fixed, or trivial if it has a least element, i.e., an element which is a subset of all the others. Otherwise, an ultrafilter is said to be nontrivial, or free, or non-principle. Evidently, the only filters on finite sets are trivial.
Proposition 1. Let be a trivial ultrafilter on . Then there exists an element such that is the set of subsets of which contain .
Proof. Let be a minimal element of . It suffices to show that contains a single element. Indeed, let be an element of . Since is an ultrafilter, one of the sets , must be an element of . But , so must be an element of . Hence , so , as desired.
Proposition 2. An ultrafilter is nontrivial if and only if it contains no finite element.
Proof. By Proposition 1, if is trivial, it contains a finite element. Converesly, suppose contains a finite element . Then the set of subsets of which are elements of , ordered by inclusion, is nonempty and finite, and must have a least element. This least element must then be a least element of , so is trivial.
Existence of Non-trivial Filters on Infinite Sets
We will now show that every infinite set has a non-trivial ultrafilter.
Lemma 3. Let be a filter with no finite elements on an infinite set , and let be a subset of . Suppose that for every element of , is infinite. Then there exists a filter with no finite elements on such that and .
Proof. Let denote set of subsets of which have subsets of the form , for . By hypothesis, contains no finite elements; it is therefore enough to show that is a filter on .
Evidently, the empty set is not an element of . If and are sets such that is a subset of and is an element of , then either is an element of and so is ; or has a subset of the form , for some , and so does . Either way, is an element of .
Finally, suppose and are elements of . If they are both elements of , then is in . Suppose one, say , is an element of , and the other is an element of . Then has a subset of the form , for some ; since is an element of , is an element of . If and are elements of , then has a subset of the form ; since is in , it follows that is in . In any case, is an element of , so is a filter on , as desired.
Lemma 4. Let be an infinite set, and let be a filter on with no finite elements. Then there exists a nontrivial ultrafilter on such that .
Proof. Let be the family of filters on that contain and have no finite elements. Evidently, every totally ordered subfamily of has an upper bound, so by Zorn's Lemma, has a maximal element . Since is a filter on with no finite elements, it suffices to show that for any set , either or is an element of .
We first prove that one of the sets has infinite intersection with every element of . Indeed, suppose this is not the case. Then there exist such that and are both finite. Evidently is an element of , but is finite, a contradiction.
Thus one of the sets, has infinite intersection with every element of . Without loss of generality, let this set be . Then by Lemma 3, there exists a filter with no finite elements such that is an element of and . But since is maximal, . It follows that .
Therefore for every set , one of the sets , is an element of . Therefore is a nontrivial ultrafilter on which contains , as desired.
Corollary 5. Every finest filter is an ultrafilter.
Theorem 6. If is a filter on a set , then there exists an ultrafilter on such that .
Proof. If contains a finite set , then the subsets of this set which are elements of , ordered by inclusion, have a least element , which is therefore a subset of every element of . Let be an element of . Then the set of subsets of which contain constitute an ultrafilter finer than , as desired.
If contains no finite set, then by Lemma 4, there is a nontrivial ultrafilter on that is finer than , as desired.
Theorem 7. Every infinite set has a nontrivial ultrafilter.
Proof. Let be an infinite set. Then the set is a filter on with no finite element, so by Lemma 4, there is a non-trivial ultrafilter on of which is a subset.
Examples and Applications
Ultrafilters are used in topology. They are also used to construct the hyperreals, which lie at the foundations of non-standard analysis.
Examples of non-trivial ultrafilters are difficult (if not impossible) to give, as the only known proof of their existance relies on the Axiom of Choice.