Difference between revisions of "1989 AIME Problems/Problem 11"
(will complete later) |
(some rigor) |
||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
− | + | Let the mode be <math>x</math>, which we let appear <math>n > 1</math> times. We let the arithmetic mean be <math>M</math>, and the sum of the numbers <math>\neq x</math> be <math>S</math>. Then | |
+ | <center><math>\begin{align*} | ||
+ | D &= \left|M-x\right| = \left|\frac{S+xn}{121}-x\right| = \left|\frac{S}{121}-\left(\frac{121-n}{121}\right)x\right| | ||
+ | \end{align*}</math></center> | ||
+ | Since <math>n < 1000</math>, we wish to maximize <math>D</math>, and as <math>S</math> is essentially independent of <math>x</math>, it follows that we either wish to minimize or maximize <math>x</math> (in other words, <math>x=1,1000</math>). Indeed, <math>D(x)</math> is symmetric about <math>x = 500.5</math>; consider replacing all of numbers <math>x_i</math> in the sample with <math>1001-x_i</math>, and the value of <math>D</math> remains the same. So, [[without loss of generality]], we let <math>x=1</math>. Now, we would like to maximize the quantity | ||
+ | <center><math>\frac{S}{121}-\left(\frac{121-n}{121}\right)(1) = \frac{S+n}{121}-1</math></center> | ||
+ | <math>S</math> contains <math>121-n</math> numbers that may appear at most <math>n-1</math> times. Therefore, to maximize <math>S</math>, we would have <math>1000</math> appear <math>n-1</math> times, <math>999</math> appear <math>n-1</math> times, and so forth. We can thereby represent <math>S</math> as the sum of <math>n-1</math> arithmetic series of <math>1000, 999, \ldots, 1001 - \left\lfloor \frac{121-n}{n-1} \right\rfloor</math>. We let <math>k = \left\lfloor \frac{121-n}{n-1} \right\rfloor</math>, so | ||
+ | <center><math>S = (n-1)\left[\frac{k(1000 + 1001 - k)}{2}\right] + R(n)</math></center> | ||
+ | where <math>R(n)</math> denotes the sum of the remaining <math>121-(n-1)k</math> numbers, namely <math>R(n) = (121-(n-1)k)(1000-k)</math>. | ||
− | {{ | + | At this point, we introduce the crude estimate{{ref|1}} that <math>k=\frac{121-n}{n-1}</math>, so <math>R(n) = 0</math> and |
+ | <center><math>\begin{align*}2S+2n &= (121-n)\left(2001-\frac{121-n}{n-1}\right)+2n \ | ||
+ | &= (120-(n-1))\left(2002-\frac{120}{n-1}\right) = C - (2002)(n-1) - \frac{120^2}{n-1}+2n</math></center> | ||
+ | where <math>C</math> is some constant which does not affect which <math>n</math> yields a maximum. Expanding and scaling again, we wish to maximize the expression | ||
+ | <center><math>-2002(n-1) + 2n - \frac{120^2}{n-1} + C = -2000(n-1)- \frac{120^2}{n-1} + C,</math></center> | ||
+ | or after scaling, we wish to minimize the expression <math>5(n-1) + \frac{36}{n-1}</math>. By [[AM-GM]], we have <math>5(n-1) + \frac{36}{n-1} \le 2\sqrt{5(n-1) \cdot \frac{36}{n-1}}</math>, with equality coming when <math>5(n-1) = \frac{36}{n-1}</math>, so <math>n-1 \approx 3</math>. Substituting this result in gives an answer of <math>\boxed{947}</math>. | ||
+ | |||
+ | ---- | ||
+ | |||
+ | In less formal language, it quickly becomes clear after some trial and error that in our sample, there will be <math>n</math> values equal to one and <math>n-1</math> values each of <math>1000, 999, 998 \ldots</math>. It is fairly easy to find the [[maximum]]. Try <math>n=2</math>, which yields <math>924</math>, <math>n=3</math>, which yields <math>942</math>, <math>n=4</math>, which yields <math>947</math>, and <math>n=5</math>, which yields <math>944</math>. The maximum difference occurred at <math>n=4</math>, so the answer is <math>947</math>. | ||
+ | |||
+ | == Notes == | ||
+ | *{{cite|1}} In fact, when <math>n = 2,3,4,5</math> (which some simple testing shows that the maximum will occur around), it turns out that <math>\frac{121-n}{n-1}</math> is an integer anyway, so indeed <math>k = \left\lfloor \frac{121-n}{n-1} \right\rfloor = \frac{121-n}{n-1}</math>. | ||
== See also == | == See also == |
Revision as of 16:35, 11 April 2008
Contents
[hide]Problem
A sample of 121 integers is given, each between 1 and 1000 inclusive, with repetitions allowed. The sample has a unique mode (most frequent value). Let be the difference between the mode and the arithmetic mean of the sample. What is the largest possible value of ? (For real , is the greatest integer less than or equal to .)
Solution
Let the mode be , which we let appear times. We let the arithmetic mean be , and the sum of the numbers be . Then
D &= \left|M-x\right| = \left|\frac{S+xn}{121}-x\right| = \left|\frac{S}{121}-\left(\frac{121-n}{121}\right)x\right|
\end{align*}$ (Error compiling LaTeX. Unknown error_msg)Since , we wish to maximize , and as is essentially independent of , it follows that we either wish to minimize or maximize (in other words, ). Indeed, is symmetric about ; consider replacing all of numbers in the sample with , and the value of remains the same. So, without loss of generality, we let . Now, we would like to maximize the quantity
contains numbers that may appear at most times. Therefore, to maximize , we would have appear times, appear times, and so forth. We can thereby represent as the sum of arithmetic series of . We let , so
where denotes the sum of the remaining numbers, namely .
At this point, we introduce the crude estimate[1] that , so and
where is some constant which does not affect which yields a maximum. Expanding and scaling again, we wish to maximize the expression
or after scaling, we wish to minimize the expression . By AM-GM, we have , with equality coming when , so . Substituting this result in gives an answer of .
In less formal language, it quickly becomes clear after some trial and error that in our sample, there will be values equal to one and values each of . It is fairly easy to find the maximum. Try , which yields , , which yields , , which yields , and , which yields . The maximum difference occurred at , so the answer is .
Notes
- Template:Cite In fact, when (which some simple testing shows that the maximum will occur around), it turns out that is an integer anyway, so indeed .
See also
1989 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |