Difference between revisions of "1992 USAMO Problems/Problem 2"
ZzZzZzZzZzZz (talk | contribs) |
|||
Line 41: | Line 41: | ||
First multiply both sides of the equation by <math>\sin 1</math>, so the right hand side is <math>\frac{\cos 1}{\sin 1}</math>. Now by rewriting <math>\sin 1=\sin((k+1)-k)=\sin(k+1)\cos(k)+\sin(k)\cos(k+1)</math>, we can derive the identity <math>\tan(n+1)-\tan(n)=\frac{\sin 1}{\cos(n)\cos(n+1)}</math>. Then the left hand side of the equation simplifies to <math>\tan 89-\tan 0=\tan 89=\frac{\sin 89}{\cos 89}=\frac{\cos 1}{\sin 1}</math> as desired. | First multiply both sides of the equation by <math>\sin 1</math>, so the right hand side is <math>\frac{\cos 1}{\sin 1}</math>. Now by rewriting <math>\sin 1=\sin((k+1)-k)=\sin(k+1)\cos(k)+\sin(k)\cos(k+1)</math>, we can derive the identity <math>\tan(n+1)-\tan(n)=\frac{\sin 1}{\cos(n)\cos(n+1)}</math>. Then the left hand side of the equation simplifies to <math>\tan 89-\tan 0=\tan 89=\frac{\sin 89}{\cos 89}=\frac{\cos 1}{\sin 1}</math> as desired. | ||
− | {{ | + | == Solution 3== |
+ | Multiply by <math>\sin{1}</math>. We get: | ||
+ | |||
+ | <math>\frac {\sin{1}}{\cos{0}\cos{1}} + \frac {\sin{1}}{\cos{1}\cos{2}} + ... + \frac {\sin{1}}{\cos{88}\cos{89}} = \frac {\cos{1}}{\sin{1}}</math> | ||
+ | |||
+ | we can right this as: | ||
+ | |||
+ | <math>\frac {\sin{1 - 0}}{\cos{0}\cos{1}} + \frac {\sin{2 - 1}}{\cos{1}\cos{2}} + ... + \frac {\sin{89 - 88}}{\cos{88}\cos{89}} = \frac {\cos{1}}{\sin{1}}</math> | ||
+ | |||
+ | This is an identity <math>\tan{a} - \tan{b} = \frac {\sin{(a - b)}}{\cos{a}\cos{b}}</math> | ||
+ | |||
+ | Therefore; | ||
+ | |||
+ | <math>\sum_{i = 1}^{89}[\tan{k} - \tan{(k - 1)}] = \tan{89} - \tan{0} = \cot{1}</math>, because of telescoping. | ||
+ | |||
+ | but since we multiplied <math>\sin{1}</math> in the beginning, we need to divide by <math>\sin{1}</math>. So we get that: | ||
+ | |||
+ | <math>\frac {1}{\cos{0}\cos{1}} + \frac {1}{\cos{1}\cos{2}} + \frac {1}{\cos{2}\cos{3}} + .... + \frac {1}{\cos{88}\cos{89}} = \frac {\cos{1}}{\sin^2{1}}</math> | ||
+ | as desired. QED | ||
== Resources == | == Resources == |
Revision as of 20:48, 10 June 2008
Contents
[hide]Problem
Prove
Solution 1
Consider the points in the coordinate plane with origin , for integers .
Evidently, the angle between segments and is , and the length of segment is . It then follows that the area of triangle is . Therefore so as desired.
Solution 2
First multiply both sides of the equation by , so the right hand side is . Now by rewriting , we can derive the identity . Then the left hand side of the equation simplifies to as desired.
Solution 3
Multiply by . We get:
we can right this as:
This is an identity
Therefore;
, because of telescoping.
but since we multiplied in the beginning, we need to divide by . So we get that:
as desired. QED
Resources
1992 USAMO (Problems • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |