Difference between revisions of "Base Angle Theorem"

m
Line 2: Line 2:
  
 
==Proof==
 
==Proof==
Since the triangle only has three sides, the two equal-measuring sides must be adjacent. Let them meet at vertex <math>A</math>. Now we draw [[height]] <math>AD</math> to <math>BC</math>. From the [[Pythagorean Theorem]], <math>BD=CD</math>, and thus <math>\triangle ABD</math> is similar to <math>\triangle ACD</math>, and <math>\angle DBA=\angle DCA</math>.
+
Since the triangle only has three sides, the two equal-measuring sides must be adjacent. Let them meet at vertex <math>A</math>.
 +
 
 +
Now we draw [[height]] <math>AD</math> to <math>BC</math>. From the [[Pythagorean Theorem]], <math>BD=CD</math>, and thus <math>\triangle ABD</math> is similar to <math>\triangle ACD</math>, and <math>\angle DBA=\angle DCA</math>. <asy>
 +
unitsize(5); defaultpen(fontsize(10));
 +
pair A,B,C,D,E,F,G,H;
 +
A=(0,10);
 +
B=(-5,0);
 +
C=(5,0);
 +
D=(0,0);
 +
E=(1,1);
 +
F=(-1,1);
 +
G=(-1,0);
 +
H=(1,0);
 +
draw(A--B);
 +
draw(B--C);
 +
draw(C--A);
 +
draw(A--D);
 +
draw(E--F);
 +
draw(E--H);
 +
draw(F--G);
 +
label("$A$",A,N);
 +
label("$B$",B,SW);
 +
label("$C$",C,SE);
 +
label("$D$",D,S);</asy>
  
 
[[Category:Theorems]]
 
[[Category:Theorems]]
 
[[Category:Geometry]]
 
[[Category:Geometry]]

Revision as of 15:59, 31 August 2008

The Hinge Theorem states that in an isosceles triangle, the measures of the angles opposite the equal-measuring sides are equal.

Proof

Since the triangle only has three sides, the two equal-measuring sides must be adjacent. Let them meet at vertex $A$.

Now we draw height $AD$ to $BC$. From the Pythagorean Theorem, $BD=CD$, and thus $\triangle ABD$ is similar to $\triangle ACD$, and $\angle DBA=\angle DCA$. [asy] unitsize(5); defaultpen(fontsize(10)); pair A,B,C,D,E,F,G,H; A=(0,10); B=(-5,0); C=(5,0); D=(0,0); E=(1,1); F=(-1,1); G=(-1,0); H=(1,0); draw(A--B); draw(B--C); draw(C--A); draw(A--D); draw(E--F); draw(E--H); draw(F--G); label("$A$",A,N); label("$B$",B,SW); label("$C$",C,SE); label("$D$",D,S);[/asy]