Difference between revisions of "Real part"

 
m
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Any [[complex number]] <math>z</math> can be written in the form <math>z = a + bi</math> where <math>i = \sqrt{-1}</math> is the [[imaginary unit]] and  <math>a</math> and <math>b</math> are [[real number]]s.  Then the '''real part''' of <math>z</math>, usually denoted <math>\Re z</math> or <math>\mathrm{Re} z</math>, is just the value <math>a</math>.
+
Any [[complex number]] <math>z</math> can be written in the form <math>z = a + bi</math> where <math>i = \sqrt{-1}</math> is the [[imaginary unit]] and  <math>a</math> and <math>b</math> are [[real number]]s.  Then the '''real part''' of <math>z</math>, usually denoted <math>\Re (z)</math> or <math>\mathrm{Re} (z)</math>, is just the value <math>a</math>.
  
Geometrically, if a complex number is plotted in the [[complex plane]], its real part is its <math>x</math>-coordinate ([[ordinate]]).
+
Geometrically, if a complex number is plotted in the [[complex plane]], its real part is its <math>x</math>-coordinate ([[abscissa]]).
  
A complex number <math>z</math> is real exactly if <math>z = \mathrm{Re}(z)</math>.
+
A complex number <math>z</math> is real exactly when <math>z = \mathrm{Re}(z)</math>.
  
 
The [[function]] <math>\mathrm{Re}</math> can also be defined in terms of the [[complex conjugate]] <math>\overline z</math> of <math>z</math>: <math>\mathrm{Re}(z) = \frac{z + \overline z}2</math>.  (Recall that if <math>z = a + bi</math>, <math>\overline z = a - bi</math>).
 
The [[function]] <math>\mathrm{Re}</math> can also be defined in terms of the [[complex conjugate]] <math>\overline z</math> of <math>z</math>: <math>\mathrm{Re}(z) = \frac{z + \overline z}2</math>.  (Recall that if <math>z = a + bi</math>, <math>\overline z = a - bi</math>).
Line 15: Line 15:
 
* <math>\mathrm{Re}(4e^{\frac {\pi i}6}) = \mathrm{Re}(4(\cos \frac \pi6 + i \sin \frac\pi 6)) = 2\sqrt 3</math>
 
* <math>\mathrm{Re}(4e^{\frac {\pi i}6}) = \mathrm{Re}(4(\cos \frac \pi6 + i \sin \frac\pi 6)) = 2\sqrt 3</math>
  
* <math>\mathrm{Re}((1 + i)\cdot(2 + i)) = \mathrm{Re}(1 + 3i) = 1</math>.  Note in particular that <math>\mathrm Re</math> is ''not'' in general a [[multiplicative function]], <math>\mathrm{Re}(w\cdot z) \neq \mathrm{Re}(w) \cdot \mathrm{Re}(z)</math> for arbitrary complex numbers <math>w, z</math>.
+
* <math>\mathrm{Re}((1 + i)\cdot(2 + i)) = \mathrm{Re}(1 + 3i) = 1</math>.  Note in particular that <math>\mathrm {Re}</math> is ''not'' in general a [[multiplicative function]], <math>\mathrm{Re}(w\cdot z) \neq \mathrm{Re}(w) \cdot \mathrm{Re}(z)</math> for arbitrary complex numbers <math>w, z</math>.
  
 
==Practice Problem 1==
 
==Practice Problem 1==
Line 27: Line 27:
  
 
* [[Imaginary part]]
 
* [[Imaginary part]]
 +
 +
[[Category:Algebra]]
 +
[[Category:Complex numbers]]

Latest revision as of 14:56, 5 September 2008

Any complex number $z$ can be written in the form $z = a + bi$ where $i = \sqrt{-1}$ is the imaginary unit and $a$ and $b$ are real numbers. Then the real part of $z$, usually denoted $\Re (z)$ or $\mathrm{Re} (z)$, is just the value $a$.

Geometrically, if a complex number is plotted in the complex plane, its real part is its $x$-coordinate (abscissa).

A complex number $z$ is real exactly when $z = \mathrm{Re}(z)$.

The function $\mathrm{Re}$ can also be defined in terms of the complex conjugate $\overline z$ of $z$: $\mathrm{Re}(z) = \frac{z + \overline z}2$. (Recall that if $z = a + bi$, $\overline z = a - bi$).

Examples

  • $\mathrm{Re}(3 + 4i) = 3$
  • $\mathrm{Re}(4(\cos \frac \pi6 + i \sin \frac\pi 6)) = 4 \cos \frac \pi 6 = 2\sqrt 3$
  • $\mathrm{Re}(4e^{\frac {\pi i}6}) = \mathrm{Re}(4(\cos \frac \pi6 + i \sin \frac\pi 6)) = 2\sqrt 3$

Practice Problem 1

Find the conditions on $w$ and $z$ so that $\mathrm{Re}(w\cdot z) = \mathrm{Re}(w) \cdot \mathrm{Re}(z)$.

Solution


See Also