Difference between revisions of "1969 Canadian MO Problems/Problem 6"

(box)
(Solution)
Line 12: Line 12:
  
  
{{Old CanadaMO box|num-b=1|num-a=3|year=1969}}
+
{{Old CanadaMO box|num-b=5|num-a=7|year=1969}}

Revision as of 11:36, 10 September 2008

Problem

Find the sum of $1\cdot 1!+2\cdot 2!+3\cdot 3!+\cdots+(n-1)(n-1)!+n\cdot n!$, where $n!=n(n-1)(n-2)\cdots2\cdot1$.

Solution

Note that for any positive integer $n,$ $n\cdot n!+(n-1)\cdot(n-1)!=(n^2+n-1)(n-1)!=(n+1)!-(n-1)!.$ Hence, pairing terms in the series will telescope most of the terms.

If $n$ is odd, $(n+1)!-(n-1)!+(n-1)!-(n-3)!\cdots -2!+2!-0!.$

If $n$ is even, $(n+1)!-(n-1)!+(n-1)!-(n-3)!\cdots -3!+3!-1!.$ In both cases, the expression telescopes into $(n+1)!-1.$


1969 Canadian MO (Problems)
Preceded by
Problem 5
1 2 3 4 5 6 7 8 Followed by
Problem 7