Difference between revisions of "User:ComplexZeta"

m (Changing so it would be active)
(Typo?)
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Hi! I'm Simon Rubinstein-Salzedo. I've just finished my third year as a mathematics major at the [[College of Creative Studies]] at [[University of California, Santa Barbara]]. CCS is the best place in the country for a serious and motivated student to study mathematics (or seven other disciplines), and that's why I go there. My greatest claim to fame seems to be [[Simon's Favorite Factoring Trick]], which was named after me. But eventually I'll prove the [[Riemann Hypothesis]] and the [[Birch and Swinnerson-Dyer conjecture]], and then I will have greater claims to fame. In fact, let <math>p</math> be a prime congruent to <math>1\pmod 3</math>, and consider a [[Dirichlet character|character]] <math>\chi</math> of <math>\mathbb{Q}(\zeta_p)</math>. Then its associated ''L''-function <math>L(s,\chi)</math> satisfies...
+
Hi! I'm Simon Rubinstein-Salzedo. I've just finished my third year as a mathematics major at the [[College of Creative Studies]] at [[University of California, Santa Barbara]]. CCS is the best place in the country for a serious and motivated student to study mathematics (or seven other disciplines), and that's why I go there. My greatest claim to fame seems to be [[Simon's Favorite Factoring Trick]], which was named after me. But eventually I'll prove the [[Riemann Hypothesis]] and the [[Birch and Swinnerton-Dyer conjecture]], and then I will have greater claims to fame. In fact, let <math>p</math> be a prime congruent to <math>1\pmod 3</math>, and consider a [[Dirichlet character|character]] <math>\chi</math> of <math>\mathbb{Q}(\zeta_p)</math>. Then its associated ''L''-function <math>L(s,\chi)</math> satisfies...

Latest revision as of 21:22, 1 November 2008

Hi! I'm Simon Rubinstein-Salzedo. I've just finished my third year as a mathematics major at the College of Creative Studies at University of California, Santa Barbara. CCS is the best place in the country for a serious and motivated student to study mathematics (or seven other disciplines), and that's why I go there. My greatest claim to fame seems to be Simon's Favorite Factoring Trick, which was named after me. But eventually I'll prove the Riemann Hypothesis and the Birch and Swinnerton-Dyer conjecture, and then I will have greater claims to fame. In fact, let $p$ be a prime congruent to $1\pmod 3$, and consider a character $\chi$ of $\mathbb{Q}(\zeta_p)$. Then its associated L-function $L(s,\chi)$ satisfies...