Difference between revisions of "1986 AJHSME Problems/Problem 13"

m
m (Solution)
Line 26: Line 26:
  
 
Now we plug those in:
 
Now we plug those in:
<math></math>\begin{align*}
+
<cmath>\begin{align*}
 
8 + 6 + a + b + c + d &= 8 + 6 + 8 + 6 \
 
8 + 6 + a + b + c + d &= 8 + 6 + 8 + 6 \
 
&= 14 \times 2 \
 
&= 14 \times 2 \
 
&= 28 \
 
&= 28 \
\end{align*}<math>
+
\end{align*}</cmath>
  
28 is </math>\boxed{\text{C}}$.
+
28 is <math>\boxed{\text{C}}</math>.
  
 
==See Also==
 
==See Also==
  
 
[[1986 AJHSME Problems]]
 
[[1986 AJHSME Problems]]

Revision as of 18:24, 24 January 2009

Problem

The perimeter of the polygon shown is

[asy] draw((0,0)--(0,6)--(8,6)--(8,3)--(2.7,3)--(2.7,0)--cycle); label("$6$",(0,3),W); label("$8$",(4,6),N); [/asy]

$\text{(A)}\ 14 \qquad \text{(B)}\ 20 \qquad \text{(C)}\ 28 \qquad \text{(D)}\ 48$

$\text{(E)}\ \text{cannot be determined from the information given}$

Solution

For the segments parallel to the side with side length 8, let's call those two segments $a$ and $b$, the longer segment being $b$, the shorter one being $a$.

For the segments parallel to the side with side length 6, let's call those two segments $c$ and $d$, the longer segment being $d$, the shorter one being $c$.

So the perimeter of the polygon would be...

$8 + 6 + a + b + c + d$

Note that $a + b = 8$, and $c + d = 6$.

Now we plug those in: \begin{align*} 8 + 6 + a + b + c + d &= 8 + 6 + 8 + 6 \\ &= 14 \times 2 \\ &= 28 \\ \end{align*}

28 is $\boxed{\text{C}}$.

See Also

1986 AJHSME Problems