Difference between revisions of "Mock AIME 3 Pre 2005 Problems/Problem 14"

m (rough solution)
Line 3: Line 3:
  
 
==Solution==
 
==Solution==
 +
Invert about a circle with radius 1 and center P. Note that since all relevant circles and lines go through P, they all are transformed into lines, and <math>\omega_1,\omega_2, l</math> are all tangent at infinity (i.e. parallel). That was the crux move; some more basic length chasing using similar triangles gets you the answer.
 
{{solution}}
 
{{solution}}
  
 
==See also==
 
==See also==

Revision as of 23:03, 11 March 2009

Problem

Circles $\omega_1$ and $\omega_2$ are centered on opposite sides of line $l$, and are both tangent to $l$ at $P$. $\omega_3$ passes through $P$, intersecting $l$ again at $Q$. Let $A$ and $B$ be the intersections of $\omega_1$ and $\omega_3$, and $\omega_2$ and $\omega_3$ respectively. $AP$ and $BP$ are extended past $P$ and intersect $\omega_2$ and $\omega_1$ at $C$ and $D$ respectively. If $AD = 3, AP = 6, DP = 4,$ and $PQ = 32$, then the area of triangle $PBC$ can be expressed as $\frac{p\sqrt{q}}{r}$, where $p, q,$ and $r$ are positive integers such that $p$ and $r$ are coprime and $q$ is not divisible by the square of any prime. Determine $p + q + r$.

Solution

Invert about a circle with radius 1 and center P. Note that since all relevant circles and lines go through P, they all are transformed into lines, and $\omega_1,\omega_2, l$ are all tangent at infinity (i.e. parallel). That was the crux move; some more basic length chasing using similar triangles gets you the answer. This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also