Difference between revisions of "2006 Alabama ARML TST Problems/Problem 5"

(New page: ==Problem== There exist positive integers <math>A</math>, <math>B</math>, <math>C</math>, and <math>D</math> with no common factor greater than 1, such that <center><math>A\log_{1200} 2+B...)
 
m (See also)
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
There exist positive integers <math>A</math>, <math>B</math>, <math>C</math>, and <math>D</math> with no common factor greater than 1, such that
+
There exist positive integers <math>A</math>, <math>B</math>, <math>C</math>, and <math>D</math> with no [[greatest common divisor|common factor]] greater than 1, such that
  
 
<center><math>A\log_{1200} 2+B\log_{1200} 3+C\log_{1200} 5=D.</math></center>
 
<center><math>A\log_{1200} 2+B\log_{1200} 3+C\log_{1200} 5=D.</math></center>
Line 16: Line 16:
  
 
==See also==
 
==See also==
 +
{{ARML box|year=2006|state=Alabama|num-b=4|num-a=6}}
 +
[[1995 AHSME Problems/Problem 24|A similar problem]]
 +
 +
[[Category:Introductory Algebra Problems]]

Latest revision as of 10:12, 1 April 2009

Problem

There exist positive integers $A$, $B$, $C$, and $D$ with no common factor greater than 1, such that

$A\log_{1200} 2+B\log_{1200} 3+C\log_{1200} 5=D.$

Find $A+B+C+D$.

Solution

\[A\log_{1200} 2+B\log_{1200} 3+C\log_{1200} 5=D\]

Simplifying and taking the logarithms away,

\[2^A \cdot 3^B \cdot 5^C=1200^D=2^{4D} \cdot 3^{D} \cdot 5^{2D}\]

Therefore, $A=4D$, $B=D$, and $C=2D$. Since $A, B, C,$ and $D$ are relatively prime, $D=1$, $A=4$, $B=1$, $C=2$. $A+B+C+D=\boxed{8}$

See also

2006 Alabama ARML TST (Problems)
Preceded by:
Problem 4
Followed by:
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A similar problem