Difference between revisions of "2009 AIME II Problems/Problem 3"
(→Solution) |
m (→Solution) |
||
Line 17: | Line 17: | ||
label(" | label(" | ||
</asy></center> | </asy></center> | ||
− | From the problem, <math>AB=100</math> and triangle <math>FBA</math> is a right triangle. As <math>ABCD</math> is a rectangle, triangles <math>BCA</math>, and <math>ABE</math> are also right triangles. By <math>AA</math>, <math>\triangle FBA \sim \triangle BCA</math>, and <math>\triangle FBA \sim \triangle ABE</math>, so <math>\triangle ABE \sim \triangle BCA</math>. This gives <math>\frac {AE}{AB}= \frac {AB}{BC}</math>. <math>AE=\frac{AD}{2}</math> and <math> | + | From the problem, <math>AB=100</math> and triangle <math>FBA</math> is a right triangle. As <math>ABCD</math> is a rectangle, triangles <math>BCA</math>, and <math>ABE</math> are also right triangles. By <math>AA</math>, <math>\triangle FBA \sim \triangle BCA</math>, and <math>\triangle FBA \sim \triangle ABE</math>, so <math>\triangle ABE \sim \triangle BCA</math>. This gives <math>\frac {AE}{AB}= \frac {AB}{BC}</math>. <math>AE=\frac{AD}{2}</math> and <math>BC=AD</math>, so <math>\frac {AD}{2AB}= \frac {AB}{AD}</math>, or <math>(AD)^2=2(AB)^2</math>, so <math>AD=AB \sqrt{2}</math>, or <math>100 \sqrt{2}</math>, so the answer is <math>\boxed{141}</math>. |
Revision as of 10:08, 12 April 2009
Problem
In rectangle , . Let be the midpoint of . Given that line and line are perpendicular, find the greatest integer less than .
Solution
From the problem, and triangle is a right triangle. As is a rectangle, triangles , and are also right triangles. By , , and , so . This gives . and , so , or , so , or , so the answer is .