|
|
(5 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | == Problem ==
| + | #REDIRECT [[2006 AIME I Problems/Problem 2]] |
− | Let [[set]] <math> \mathcal{A} </math> be a 90-[[element]] [[subset]] of <math> \{1,2,3,\ldots,100\}, </math> and let <math> S </math> be the sum of the elements of <math> \mathcal{A}. </math> Find the number of possible values of <math> S. </math>
| |
− | | |
− | == Solution ==
| |
− | By the [[Triangle Inequality]]:
| |
− | | |
− | <math>\log_{10} 12 + \log_{10} n > \log_{10} 75 </math>
| |
− | | |
− | <math>\log_{10} 12n > \log_{10} 75 </math>
| |
− | | |
− | <math> 12n > 75 </math>
| |
− | | |
− | <math> n > \frac{75}{12} = \frac{25}{4} = 6.25 </math>
| |
− | | |
− | Also:
| |
− | | |
− | <math>\log_{10} 12 + \log_{10} 75 > \log_{10} n </math>
| |
− | | |
− | <math>\log_{10} 12\cdot75 > \log_{10} n </math>
| |
− | | |
− | <math> n < 900 </math>
| |
− | | |
− | Combining these two inequalities:
| |
− | | |
− | <math> 6.25 < n < 900 </math>
| |
− | | |
− | The number of possible integer values for <math>n</math> is the number of integers over the interval <math>(6.25 , 900)</math>, which is <math>893</math>.
| |
− | | |
− | == See also ==
| |
− | *[[2006 AIME II Problems]]
| |
− | | |
− | [[Category:Intermediate Geometry Problems]]
| |
− | [[Category:Intermediate Algebra Problems]]
| |