Difference between revisions of "2006 AIME A Problems/Problem 2"

(See also)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
== Problem ==
+
#REDIRECT [[2006 AIME I Problems/Problem 2]]
Let [[set]] <math> \mathcal{A} </math> be a 90-[[element]] [[subset]] of <math> \{1,2,3,\ldots,100\}, </math> and let <math> S </math> be the sum of the elements of <math> \mathcal{A}. </math> Find the number of possible values of <math> S. </math>
 
 
 
== Solution ==
 
The smallest <math>S</math> is <math>1+2+ \ldots +90 = 91 \cdot 45 = 4095</math>. The largest <math>S</math> is <math>11+12+ \ldots +100=111\cdot 45=4995</math>. All numbers between <math>4095</math> and <math>4995</math> are possible values of S, so the number of possible values of S is <math>4995-4095+1=901</math>.
 
 
 
== See also ==
 
*[{{AIME box|year=2006|n=II|num-b=1|num-a=3}}
 
 
 
[[Category:Intermediate Geometry Problems]]
 
[[Category:Intermediate Algebra Problems]]
 

Latest revision as of 20:57, 5 June 2009