|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | == Problem ==
| + | #REDIRECT [[2006 AIME I Problems/Problem 2]] |
− | Let [[set]] <math> \mathcal{A} </math> be a 90-[[element]] [[subset]] of <math> \{1,2,3,\ldots,100\}, </math> and let <math> S </math> be the sum of the elements of <math> \mathcal{A}. </math> Find the number of possible values of <math> S. </math>
| |
− | | |
− | == Solution ==
| |
− | The smallest <math>S</math> is <math>1+2+ \ldots +90 = 91 \cdot 45 = 4095</math>. The largest <math>S</math> is <math>11+12+ \ldots +100=111\cdot 45=4995</math>. All numbers between <math>4095</math> and <math>4995</math> are possible values of S, so the number of possible values of S is <math>4995-4095+1=901</math>.
| |
− | | |
− | == See also ==
| |
− | {{AIME box|year=2006|n=II|num-b=1|num-a=3}}
| |
− | | |
− | [[Category:Intermediate Geometry Problems]]
| |
− | [[Category:Intermediate Algebra Problems]]
| |