Difference between revisions of "2006 AIME A Problems/Problem 13"

(Problem)
(Redirected page to 2006 AIME I Problems/Problem 13)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
== Problem ==
+
#REDIRECT [[2006 AIME I Problems/Problem 13]]
For each [[even integer | even]] [[positive integer]] <math> x </math>, let <math> g(x) </math> denote the greatest power of 2 that [[divisor | divides]] <math> x. </math> For example, <math> g(20)=4 </math> and <math> g(16)=16. </math> For each positive integer <math> n, </math> let <math> S_n=\sum_{k=1}^{2^{n-1}}g(2k). </math> Find the greatest integer <math> n </math> less than 1000 such that <math> S_n </math> is a [[perfect square]].
 
 
 
== Solution ==
 
{{solution}}
 
 
 
== See also ==
 
*[[2006 AIME II Problems/Problem 14 | Next problem]]
 
*[[2006 AIME II Problems/Problem 12 | Previous problem]]
 
*[[2006 AIME II Problems]]
 
 
 
[[Category:Intermediate Number Theory Problems]]
 
[[Category:Intermediate Combinatorics Problems]]
 

Latest revision as of 11:14, 28 June 2009