Difference between revisions of "1989 AIME Problems/Problem 8"

m (fix)
(Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 
Assume that <math>x_1,x_2,\ldots,x_7</math> are real numbers such that
 
Assume that <math>x_1,x_2,\ldots,x_7</math> are real numbers such that
<center><math>x_1+4x_2+9x_3+16x_4+25x_5+36x_6+49x_7=1</math></center>
+
<cmath>\begin{align*}x_1+4x_2+9x_3+16x_4+25x_5+36x_6+49x_7&=1\\
<center><math>4x_1+9x_2+16x_3+25x_4+36x_5+49x_6+64x_7=12</math></center>
+
4x_1+9x_2+16x_3+25x_4+36x_5+49x_6+64x_7&=12\\
<center><math>9x_1+16x_2+25x_3+36x_4+49x_5+64x_6+81x_7=123</math></center>
+
9x_1+16x_2+25x_3+36x_4+49x_5+64x_6+81x_7&=123\end{align*}.</cmath>
 
   
 
   
 
Find the value of <math>16x_1+25x_2+36x_3+49x_4+64x_5+81x_6+100x_7</math>.
 
Find the value of <math>16x_1+25x_2+36x_3+49x_4+64x_5+81x_6+100x_7</math>.
  
 
__TOC__
 
__TOC__
 +
 
== Solution ==
 
== Solution ==
 
=== Solution 1===
 
=== Solution 1===

Revision as of 19:24, 5 August 2009

Problem

Assume that $x_1,x_2,\ldots,x_7$ are real numbers such that \begin{align*}x_1+4x_2+9x_3+16x_4+25x_5+36x_6+49x_7&=1\\ 4x_1+9x_2+16x_3+25x_4+36x_5+49x_6+64x_7&=12\\ 9x_1+16x_2+25x_3+36x_4+49x_5+64x_6+81x_7&=123\end{align*}.

Find the value of $16x_1+25x_2+36x_3+49x_4+64x_5+81x_6+100x_7$.

Solution

Solution 1

Notice that because we are given a system of $3$ equations with $7$ unknowns, the values $(x_1, x_2, \ldots, x_7)$ are not fixed; indeed one can take any four of the variables and assign them arbitrary values, which will in turn fix the last three.


Given this, we suspect there is a way to derive the last expression as a linear combination of the three given expressions. Let the coefficent of $x_i$ in the first equation be $y_i^2$; then its coefficients in the second equation is $(y_i+1)^{2}$ and the third as $(y_i+2)^2$. We need to find a way to sum these to make $(y_i+3)^2$ [this is in fact a specific approach generalized by the next solution below].

Thus, we hope to find constants $a,b,c$ satisfying $ay_i^2 + b(y_i+1)^2 + c(y_i+2)^2 = (y_i + 3)^2$. FOILing out all of the terms, we get

$[ay^2 + by^2 + cy^2] + [2by + 4cy] + b + 4c = y^2 + 6y + 9.$

Comparing coefficents gives us the three equation system:

\begin{align*}a + b + c &= 1 \\ 2b + 4c &= 6 \\ b + 4c &= 9 \end{align*}

Subtracting the second and third equations yields that $b = -3$, so $c = 3$ and $a = 1$. It follows that the desired expression is $a \cdot (1) + b \cdot (12) + c \cdot (123)  = 1 - 36 + 369 = \boxed{334}$.

Solution 2

Notice that we may rewrite the equations in the more compact form as:

$\sum_{i=1}^{7}i^2x_i=c_1,\ \ \sum_{i=1}^{7}(i+1)^2x_i=c_2,\ \ \sum_{i=1}^{7}(i+2)^2x_i=c_3,$ and $\sum_{i=1}^{7}(i+3)^2x_i=c_4,$

where $c_1=1, c_2=12, c_3=123,$ and $c_4$ is what we're trying to find.

Now consider the polynomial given by $f(z) := \sum_{i=1}^7 (z+i)^2x_i$ (we are only treating the $x_i$ as coefficients). Notice that $f$ is in fact a quadratic. We are given $f(0), \ f(1), \ f(2)$ as $c_1, \ c_2, \ c_3$ and are asked to find $c_4$. Using the concept of finite differences (a prototype of differentiation) we find that the second differences of consecutive values is constant, so that by arithmetic operations we find $c_4=334$. Indeed $c_4 = f(2)+[((f(2) - f(1))-(f(1)-f(0)))+(f(2)-f(1))]={3 \choose 2}f(2) - {3 \choose 1}f(1) + {3 \choose 0}f(0) =334$.

See also

1989 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions