Difference between revisions of "2004 AMC 10B Problems/Problem 24"

Line 1: Line 1:
In triangle <math>ABC</math> we have <math>AB=7</math>, <math>AC=8</math>, <math>BC=9</math>. Point <math>D</math> is on the circumscribed circle of the triangle so that <math>AD</math> bisects angle <math>BAC</math>. What is the value of <math>AD/CD</math>? \
+
In triangle <math>ABC</math> we have <math>AB=7</math>, <math>AC=8</math>, <math>BC=9</math>. Point <math>D</math> is on the circumscribed circle of the triangle so that <math>AD</math> bisects angle <math>BAC</math>. What is the value of <math>AD/CD</math>?  
<math>A. \dfrac{9}{8} </math>
+
 
<math>B. \dfrac{5}{3} </math>
+
<math>\text{(A) } \dfrac{9}{8} \quad \text{(B) } \dfrac{5}{3} \quad \text{(C) } 2 \quad \text{(D) } \dfrac{17}{7} \quad \text{(E) } \dfrac{5}{2}</math>
<math>C. 2 </math>
 
<math>D. \dfrac{17}{7} </math>
 
<math>E. \dfrac{5}{2}</math>
 

Revision as of 23:47, 15 January 2010

In triangle $ABC$ we have $AB=7$, $AC=8$, $BC=9$. Point $D$ is on the circumscribed circle of the triangle so that $AD$ bisects angle $BAC$. What is the value of $AD/CD$?

$\text{(A) } \dfrac{9}{8} \quad \text{(B) } \dfrac{5}{3} \quad \text{(C) } 2 \quad \text{(D) } \dfrac{17}{7} \quad \text{(E) } \dfrac{5}{2}$