Difference between revisions of "2010 AMC 12A Problems/Problem 7"

(Created page with '== Problem == Logan is constructing a scaled model of his town. The city's water tower stands 40 meters high, and the top portion is a sphere that holds 100,000 liters of water. …')
 
Line 5: Line 5:
  
 
== Solution ==
 
== Solution ==
The water tower holds <math>\frac{100000}{0.1} = 1000000</math> times more water than Logan's miniature. Therefore, Logan should make his tower <math>\sqrt[3]{1000000} = 100</math> times shorter than the actual tower. Therefore, the height should be <math>\frac{40}{100} = \boxed{0.4}</math> meters high, or choice <math>\textbf{(C)}</math>.
+
The water tower holds <math>\frac{100000}{0.1} = 1000000</math> times more water than Logan's miniature. Therefore, Logan should make his tower <math>\sqrt[3]{1000000} = 100</math> times shorter than the actual tower. This is <math>\frac{40}{100} = \boxed{0.4}</math> meters high, or choice <math>\textbf{(C)}</math>.

Revision as of 14:48, 10 February 2010

Problem

Logan is constructing a scaled model of his town. The city's water tower stands 40 meters high, and the top portion is a sphere that holds 100,000 liters of water. Logan's miniature water tower holds 0.1 liters. How tall, in meters, should Logan make his tower?

$\textbf{(A)}\ 0.04 \qquad \textbf{(B)}\ \frac{0.4}{\pi} \qquad \textbf{(C)}\ 0.4 \qquad \textbf{(D)}\ \frac{4}{\pi} \qquad \textbf{(E)}\ 4$

Solution

The water tower holds $\frac{100000}{0.1} = 1000000$ times more water than Logan's miniature. Therefore, Logan should make his tower $\sqrt[3]{1000000} = 100$ times shorter than the actual tower. This is $\frac{40}{100} = \boxed{0.4}$ meters high, or choice $\textbf{(C)}$.