Difference between revisions of "1993 USAMO Problems/Problem 3"
m (Created page with '== Problem 3== Consider functions <math>f : [0, 1] \rightarrow \Re</math> which satisfy <table><tr> <td> </td><td>(i)</td><td><math>f(x)\ge0</math> …') |
(→Solution) |
||
Line 19: | Line 19: | ||
== Solution== | == Solution== | ||
− | + | My claim: <math>c\ge2</math> | |
+ | |||
+ | <br/> | ||
+ | <b>Lemma 1</b>) <math>f\left(\left(\frac{1}{2}\right)^n\right)\le\left(\frac{1}{2}\right)^n</math> for <math>n\in \mathbb{Z}, n\ge0</math> | ||
+ | |||
+ | For <math>n=0</math>, <math>f(1)=1</math> (ii) | ||
+ | |||
+ | Assume that it is true for <math>n-1</math>, then <math>f\left(\left(\frac{1}{2}\right)^{n}\right)+f\left(\left(\frac{1}{2}\right)^{n}\right)\le f\left(\left(\frac{1}{2}\right)^{n-1}\right)\le \left(\frac{1}{2}\right)^{n-1}</math> | ||
+ | |||
+ | <math>f\left(\left(\frac{1}{2}\right)^{n}\right)\le \left(\frac{1}{2}\right)^{n}</math> | ||
+ | |||
+ | By principle of induction, <b>lemma 1 is proven</b>. | ||
+ | |||
+ | <br/> | ||
+ | <b>Lemma 2</b>) For any <math>x</math>, <math>\left(\frac{1}{2}\right)^{n+1}<x\le\left(\frac{1}{2}\right)^n\le1</math> and <math>n\in \mathbb{Z}</math>, <math>f(x)\le\left(\frac{1}{2}\right)^n</math>. | ||
+ | |||
+ | <math>f(x)+f\left(\left(\frac{1}{2}\right)^n-x\right)\le f\left(\left(\frac{1}{2}\right)^{n}\right)\le \left(\frac{1}{2}\right)^{n}</math> (lemma 1 and (iii) ) | ||
+ | |||
+ | <math>f(x)\le\left(\frac{1}{2}\right)^n</math> (because <math>f\left(\left(\frac{1}{2}\right)^n-x\right)\ge0</math> (i) ) | ||
+ | |||
+ | <br/> | ||
+ | |||
+ | <math>_\forall 0\le x\le 1</math>, <math> \left(\frac{1}{2}\right)^{n-1}\ge2x\ge \left(\frac{1}{2}\right)^n\ge f(x)</math>. Thus, <math>c=2</math> works. | ||
+ | |||
+ | <br/> | ||
+ | |||
+ | Let's look at a function <math>g(x)=\left\{\begin{array}{ll}0&0\le x\le \frac{1}{2};\\1&\frac{1}{2}<x\le1;\\\end{array}\right </math> | ||
+ | |||
+ | It clearly have property (i) and (ii). For <math>0\le x\le\frac{1}{2}</math> and WLOG let <math>x\le y</math>, <math>f(x)+f(y)=0+f(y)\le f(y)</math> | ||
+ | |||
+ | For <math>\frac{1}{2}< x\le 1</math>, <math>x+y>1</math>. Thus, property (iii) holds too. Thus <math>g(x)</math> is one of the legit function. | ||
+ | |||
+ | <br/> | ||
+ | |||
+ | <math>\lim_{x\rightarrow\frac{1}{2}^+} cx \ge \lim_{x\rightarrow\frac{1}{2}^+} g(x)=1</math> | ||
+ | |||
+ | <math>\frac{1}{2}c>1</math> | ||
+ | |||
+ | <math>c>2</math> but approach to <math>2</math> when <math>x</math> is extremly close to <math>\frac{1}{2}</math> from the right side. | ||
+ | |||
+ | <P align="right"><math>\mathbb{Q.E.D}</math></P> | ||
== Resources == | == Resources == |
Revision as of 18:26, 22 April 2010
Problem 3
Consider functions which satisfy
(i) | for all in , | |
(ii) | , | |
(iii) | whenever , , and are all in . |
Find, with proof, the smallest constant such that
for every function satisfying (i)-(iii) and every in .
Solution
My claim:
Lemma 1) for
For , (ii)
Assume that it is true for , then
By principle of induction, lemma 1 is proven.
Lemma 2) For any , and , .
(lemma 1 and (iii) )
(because (i) )
, . Thus, works.
Let's look at a function $g(x)=\left\{\begin{array}{ll}0&0\le x\le \frac{1}{2};\\1&\frac{1}{2}<x\le1;\\\end{array}\right$ (Error compiling LaTeX. Unknown error_msg)
It clearly have property (i) and (ii). For and WLOG let ,
For , . Thus, property (iii) holds too. Thus is one of the legit function.
but approach to when is extremly close to from the right side.
Resources
1993 USAMO (Problems • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |