Difference between revisions of "2010 IMO Problems/Problem 3"
m (→Solution) |
m (→Solution) |
||
Line 23: | Line 23: | ||
Lemma 2) <math>|g(m)-g(m+1)| = 1</math> (we have show that it can't be 0) | Lemma 2) <math>|g(m)-g(m+1)| = 1</math> (we have show that it can't be 0) | ||
− | Assume for contradiction, that <math>|g(m)-g(m+1)| > 1</math>. Then there must exist a prime number <math>p</math> such that <math>g(m)</math> and <math>g(m+1)</math> are in the same residue class modulo <math>p</math>. | + | Assume for contradiction, that <math>|g(m)-g(m+1)| > 1</math>. |
+ | |||
+ | Then there must exist a prime number <math>p</math> such that <math>g(m)</math> and <math>g(m+1)</math> are in the same residue class modulo <math>p</math>. | ||
If <math>|g(m)-g(m+1)| = p^aq</math> where <math>q</math> is not divisible by <math>p</math>. | If <math>|g(m)-g(m+1)| = p^aq</math> where <math>q</math> is not divisible by <math>p</math>. |
Revision as of 22:40, 23 October 2010
Problem
Find all functions such that is a perfect square for all
Author: Gabriel Carroll, USA
Solution
Suppose such function exist then:
Lemma 1)
Assume for contradiction that
has to be a perfect square
but .
A square cannot be between 2 consecutive squares. Contradiction. Thus,
Lemma 2) (we have show that it can't be 0)
Assume for contradiction, that .
Then there must exist a prime number such that and are in the same residue class modulo .
If where is not divisible by .
If .
Consider an such that
, where is not divisible by
If .
Consider an such that
, where is not divisible by
At least one of , is not divisible by . Hence,
At least one of , is divisible by an odd amount of .
Hence, that number is not a perfect square.
Thus, ,