Difference between revisions of "User:R31415"

Line 1: Line 1:
'''<math>e^i*e^\pi=-1</math>'''
+
'''<math>e^ i\pi=-1</math>'''
Which means that i^i equals <math>(e^i*e^\pi*e^1/2)^i= e^-\pi/2
+
Which means that i^i equals <math>(e^i*e^\pi*e^ 1/2)^i= e^-\pi/2
</math>(e^i*e^\pi*e^1/2)^i= e^-\pi/2
+
</math>(e^i*e^\pi*e^1/2)^i= e^-\pi/2$
 
<dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/>
 
<dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/>

Revision as of 20:06, 7 January 2011

$e^ i\pi=-1$ Which means that i^i equals $(e^i*e^\pi*e^ 1/2)^i= e^-\pi/2$(e^i*e^\pi*e^1/2)^i= e^-\pi/2$ <dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/><dollar/>