Difference between revisions of "2010 AMC 10B Problems/Problem 13"

Line 18: Line 18:
  
 
<math>
 
<math>
2x-|60-2x|=x
+
2x-|60-2x|=x,
 
 
 
x=|60-2x|
 
x=|60-2x|
  
Line 27: Line 26:
 
   
 
   
 
<math>
 
<math>
x=60-2x
+
x=60-2x,
 
+
3x=60,
3x=60
 
 
 
 
x=20
 
x=20
 
</math>
 
</math>
Line 37: Line 34:
  
 
<math>
 
<math>
-x=60-2x
+
-x=60-2x,
 
x=60
 
x=60
 
</math>
 
</math>
Line 44: Line 41:
  
 
<math>
 
<math>
2x-|60-2x|=-x
+
2x-|60-2x|=-x,
 
 
 
3x=|60-2x|
 
3x=|60-2x|
 
</math>
 
</math>
Line 52: Line 48:
  
 
<math>
 
<math>
3x=60-2x
+
3x=60-2x,
 
+
5x=60,
5x=60
+
x=12,
 
 
x=12
 
 
</math>
 
</math>
  
Line 62: Line 56:
  
 
<math>
 
<math>
-3x=60-2x
+
-3x=60-2x,
 
+
-x=60,
-x=60
+
x=-60,
 
 
x=-60
 
 
</math>
 
</math>
  
 
Since an absolute value cannot be negative, we exclude <math>x=-60</math>. The answer is <math>20+60+12=92</math>
 
Since an absolute value cannot be negative, we exclude <math>x=-60</math>. The answer is <math>20+60+12=92</math>

Revision as of 20:14, 24 January 2011

Problem

What is the sum of all the solutions of $x = \left|2x-|60-2x|\right|$?

$\mathrm{(A)}\ 32 \qquad \mathrm{(B)}\ 60 \qquad \mathrm{(C)}\ 92 \qquad \mathrm{(D)}\ 120 \qquad \mathrm{(E)}\ 124$

Solution

Case 1:

$2x-|60-2x|=x,  x=|60-2x|$

Case 1a:

$x=60-2x,  3x=60,  x=20$

Case 1b:

$-x=60-2x,  x=60$

Case 2:

$2x-|60-2x|=-x,  3x=|60-2x|$

Case 2a:

$3x=60-2x,  5x=60,  x=12,$

Case 2b:

$-3x=60-2x,  -x=60,  x=-60,$

Since an absolute value cannot be negative, we exclude $x=-60$. The answer is $20+60+12=92$