Difference between revisions of "2011 AMC 10A Problems/Problem 21"
Jamesshin97 (talk | contribs) (Created page with '== Problem 21 == Two counterfeit coins of equal weight are mixed with 8 identical genuine coins. The weight of each of the counterfeit coins is different from the weight of each …') |
|||
Line 1: | Line 1: | ||
== Problem 21 == | == Problem 21 == | ||
− | Two counterfeit coins of equal weight are mixed with 8 identical genuine coins. The weight of each of the counterfeit coins is different from the weight of each of the genuine coins. A pair of coins is selected at random without replacement from the 10 coins. A second pair is selected at random without replacement from the remaining 8 coins. The combined weight of the first pair is equal to the combined weight of the second pair. What is the probability that all 4 selected coins are genuine? | + | Two counterfeit coins of equal weight are mixed with <math>8</math> identical genuine coins. The weight of each of the counterfeit coins is different from the weight of each of the genuine coins. A pair of coins is selected at random without replacement from the <math>10</math> coins. A second pair is selected at random without replacement from the remaining <math>8</math> coins. The combined weight of the first pair is equal to the combined weight of the second pair. What is the probability that all <math>4</math> selected coins are genuine? |
<math> \textbf{(A)}\ \frac{7}{11}\qquad\textbf{(B)}\ \frac{9}{13}\qquad\textbf{(C)}\ \frac{11}{15}\qquad\textbf{(D)}\ \frac{15}{19}\qquad\textbf{(E)}\ \frac{15}{16} </math> | <math> \textbf{(A)}\ \frac{7}{11}\qquad\textbf{(B)}\ \frac{9}{13}\qquad\textbf{(C)}\ \frac{11}{15}\qquad\textbf{(D)}\ \frac{15}{19}\qquad\textbf{(E)}\ \frac{15}{16} </math> | ||
+ | |||
+ | == Solution == | ||
+ | |||
+ | Note that we are trying to find the conditional probability <math>P(A \vert B) = \frac{P(A \cap B)}{P(B)}</math> where <math>A</math> is the <math>4</math> coins being genuine and <math>B</math> is the sum of the weight of the coins being equal. The only possibilities for <math>B</math> are (g is abbreviated for genuine and c is abbreviated for counterfeit, and the pairs are the first and last two in the quadruple) <math>(g,g,g,g),(g,c,g,c),(g,c,c,g),(c,g,g,c),(c,g,c,g)</math>. We see that <math>A \cap B</math> happens with probability <math>\frac{8}{10} \times \frac{7}{9} \times \frac{6}{8} \times \frac{5}{7} = \frac{1}{3}</math>, and <math>B</math> happens with probability <math>\frac{1}{3}+4 \times \left( \frac{8}{10} \times \frac{2}{9} \times \frac{7}{8}\times \frac{1}{7}\right) = \frac{19}{45}</math>, hence <math>P(A \vert B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{3}}{\frac{19}{45}}=\boxed{\frac{15}{19} \ \mathbf{(D)}}</math>. |
Revision as of 22:45, 15 February 2011
Problem 21
Two counterfeit coins of equal weight are mixed with identical genuine coins. The weight of each of the counterfeit coins is different from the weight of each of the genuine coins. A pair of coins is selected at random without replacement from the coins. A second pair is selected at random without replacement from the remaining coins. The combined weight of the first pair is equal to the combined weight of the second pair. What is the probability that all selected coins are genuine?
Solution
Note that we are trying to find the conditional probability where is the coins being genuine and is the sum of the weight of the coins being equal. The only possibilities for are (g is abbreviated for genuine and c is abbreviated for counterfeit, and the pairs are the first and last two in the quadruple) . We see that happens with probability , and happens with probability , hence .