|
|
(13 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | == Personal info ==
| |
| | | |
− | Name: Daniel O'Connor
| |
− |
| |
− | (full name: Daniel Verity O'Connor)
| |
− |
| |
− | Location: Los Angeles
| |
− |
| |
− |
| |
− | == Contributions ==
| |
− |
| |
− | * Created [[Chain Rule]] article
| |
− | * Created [[Fundamental Theorem of Calculus]] article
| |
− |
| |
− |
| |
− | == Random Math Problem ==
| |
− |
| |
− | Suppose you have a fair six-sided die and you're going to roll the die again and again indefinitely. What's the expected number of rolls until a <math>1</math> comes up on the die?
| |
− |
| |
− | The probability that it will take one roll is <math>\frac{1}{6} </math>.
| |
− |
| |
− | The probability that it will take two rolls is <math>\left(\frac56 \right)\left(\frac16 \right) </math>.
| |
− |
| |
− | The probability that it will take three rolls is <math>\left(\frac56 \right)^2 \left(\frac16 \right) </math>.
| |
− |
| |
− | The probability that it will take four rolls is <math>\left(\frac56 \right)^3 \left(\frac16 \right) </math>.
| |
− |
| |
− | And so on.
| |
− |
| |
− | So, the expected number of rolls that it will take to get a <math>1</math> is:
| |
− |
| |
− | <math>1\cdot \frac{1}{6} + 2\cdot \left(\frac56 \right)\left(\frac16 \right) + 3\cdot \left(\frac56 \right)^2 \left(\frac16 \right) + 4 \cdot \left(\frac56 \right)^3 \left(\frac16 \right) + \cdots</math>.
| |
− |
| |
− | What's the sum of this infinite series? It looks kind of like an infinite geometric series, but not exactly. Factoring out a <math>\frac16</math> makes it look a bit more like an infinite geometric series:
| |
− |
| |
− | <math>\left(\frac16 \right) \left(1 + 2\cdot \left(\frac56 \right) + 3\cdot \left(\frac56 \right)^2 + 4 \cdot \left(\frac56 \right)^3 + \cdots \right)</math>
| |
− |
| |
− | This is similar to a geometric series, which we know how to sum. But we have those annoying factors of <math>2</math>, <math>3</math>, <math>4</math>, etc. to worry about. Maybe we could play around with the formula for a geometric series to get a formula for this series. The formula for a geometric series is:
| |
− |
| |
− | <math>1 + r + r^2 + r^3 + r^4 + \cdots = \frac{1}{1-r}</math>.
| |
− |
| |
− | Differentiating both sides of this with respect to <math>r</math>, we find:
| |
− |
| |
− | <math>1 + 2r + 3r^2 + 4r^3 + \cdots = -(1-r)^{-2}(-1) = \frac{1}{(1-r)^2}</math>.
| |
− |
| |
− | So, we find that
| |
− |
| |
− | <math>\left(\frac16 \right) \left(1 + 2\cdot \left(\frac56 \right) + 3\cdot \left(\frac56 \right)^2 + 4 \cdot \left(\frac56 \right)^3 + \cdots \right) = \frac16 \frac{1}{(1-\frac56)^2} = \frac16 (36) = 6</math>.
| |
− |
| |
− | Which seems like a very reasonable answer, given that the die has six sides.
| |