Difference between revisions of "2011 AIME II Problems/Problem 9"
Line 1: | Line 1: | ||
− | Let <math>x_1, x_2, ... , x_6</math> be non-negative real numbers such that <math>x_1 +x_2 +x_3 +x_4 +x_5 +x_6 =1</math>, and <math>x_1 x_3 x_5 +x_2 x_4 x_6 \ge \scriptstyle | + | Let <math>x_1, x_2, ... , x_6</math> be non-negative real numbers such that <math>x_1 +x_2 +x_3 +x_4 +x_5 +x_6 =1</math>, and <math>x_1 x_3 x_5 +x_2 x_4 x_6 \ge {\scriptstyle\frac{1}{540}}</math>. Let <math>p</math> and <math>q</math> be positive relatively prime integers such that <math>\frac{p}{q}</math> is the maximum possible value of |
<math>x_1 x_2 x_3 + x_2 x_3 x_4 +x_3 x_4 x_5 +x_4 x_5 x_6 +x_5 x_6 x_1 +x_6 x_1 x_2</math>. Find <math>p+q</math>. | <math>x_1 x_2 x_3 + x_2 x_3 x_4 +x_3 x_4 x_5 +x_4 x_5 x_6 +x_5 x_6 x_1 +x_6 x_1 x_2</math>. Find <math>p+q</math>. |
Revision as of 16:47, 1 April 2011
Let be non-negative real numbers such that , and . Let and be positive relatively prime integers such that is the maximum possible value of . Find .