Difference between revisions of "2002 AMC 10B Problems/Problem 4"

(Redirected page to 2002 AMC 12B Problems/Problem 2)
 
Line 1: Line 1:
== Problem ==
+
#REDIRECT[[2002 AMC 12B Problems/Problem 2]]
 
 
What is the value of
 
 
 
<math>(3x-2)(4x+1)-(3x-2)4x+1</math>
 
 
 
when <math>x=4</math>?
 
 
 
<math> \mathrm{(A) \ } 0\qquad \mathrm{(B) \ } 1\qquad \mathrm{(C) \ } 10\qquad \mathrm{(D) \ } 11\qquad \mathrm{(E) \ } 12 </math>
 
 
 
== Solution ==
 
 
 
<math>(10)(17)-(10)(16)+1=170-160+1=11\Longrightarrow\mathrm{ {D} \ }</math>
 
 
 
 
 
 
 
One can also do most of the algebra, and only then substitute for <math>x</math>. Note that the first term <math>(3x-2)(4x+1)</math> can be written as
 
<math>(3x-2)4x + (3x-2)1</math>. Hence we get:
 
 
 
<cmath>
 
\begin{align*}
 
& (3x-2)(4x+1)-(3x-2)4x+1 \\
 
&= (3x-2)4x + (3x-2)1 -(3x-2)4x+1 \\
 
&= 3x-2+1 \\
 
&= 3x-1 \\
 
&= 11.
 
\end{align*}
 
</cmath>
 
 
 
==See Also==
 
{{AMC10 box|year=2002|ab=B|num-b=3|num-a=5}}
 
 
 
[[Category:Introductory Algebra Problems]]
 

Latest revision as of 16:25, 28 July 2011