|
|
Line 1: |
Line 1: |
− | == Problem ==
| + | #REDIRECT[[2002 AMC 12B Problems/Problem 12]] |
− | | |
− | For how many integers <math>n</math> is <math>\frac{n}{20-n}</math> the square of an integer?
| |
− | | |
− | <math>\textbf{(A) } 1\qquad \textbf{(B) } 2\qquad \textbf{(C) } 3\qquad \textbf{(D) } 4\qquad \textbf{(E) } 10</math>
| |
− | | |
− | == Solution ==
| |
− | | |
− | For <math>n=20</math> the fraction is undefined, for <math>n>20</math> and <math>n<0</math> it is negative, hence not a square.
| |
− | | |
− | This leaves <math>0\leq n < 20</math>.
| |
− | | |
− | For <math>n=0</math> the fraction equals <math>0</math>, which is a square.
| |
− | | |
− | For <math>1\leq n\leq 9</math> the fraction is strictly between <math>0</math> and <math>1</math>.
| |
− | | |
− | For <math>n=10</math> the fraction equals <math>1</math>, which is a square.
| |
− | | |
− | The next square is <math>4</math>, and this is achieved for <math>n=16</math>, and the square after that is <math>9</math>, achieved for <math>n=18</math>.
| |
− | | |
− | That leaves <math>n=19</math>, for which the fraction is <math>19</math>, which is not a square.
| |
− | | |
− | In total, there are <math>\boxed{4}</math> squares among these fractions.
| |
− | | |
− | == See Also ==
| |
− | | |
− | {{AMC10 box|year=2002|ab=B|num-b=15|num-a=17}}
| |