|
|
(2 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | == Problem ==
| + | #REDIRECT[[2003 AMC 12A Problems/Problem 15]] |
− | A semicircle of diameter <math>1</math> sits at the top of a semicircle of diameter <math>2</math>, as shown. The shaded area inside the smaller semicircle and outside the larger semicircle is called a ''lune''. Determine the area of this lune.
| |
− | | |
− | <math> \mathrm{(A) \ } \frac{1}{6}\pi-\frac{\sqrt{3}}{4}\qquad \mathrm{(B) \ } \frac{\sqrt{3}}{4}-\frac{1}{12}\pi\qquad \mathrm{(C) \ } \frac{\sqrt{3}}{4}-\frac{1}{24}\pi\qquad \mathrm{(D) \ } \frac{\sqrt{3}}{4}+\frac{1}{24}\pi\qquad \mathrm{(E) \ } \frac{\sqrt{3}}{4}+\frac{1}{12}\pi </math>
| |
− | | |
− | == Solution ==
| |
− | The shaded area is equal to the area of the smaller semicircle minus the area of a sector of the larger circle plus the area of a triangle formed by two radii of the larger semicircle and the diameter of the smaller semicircle.
| |
− | | |
− | The area of the smaller semicircle is <math>\frac{1}{2}\pi\cdot(\frac{1}{2})^{2}=\frac{1}{8}\pi</math>.
| |
− | | |
− | Since the radius of the larger semicircle is equal to the diameter of the smaller semicircle, the triangle is an equilateral triangle and the sector measures <math>60^\circ</math>.
| |
− | | |
− | The area of the <math>60^\circ</math> sector of the larger semicircle is <math>\frac{60}{360}\pi\cdot(\frac{2}{2})^{2}=\frac{1}{6}\pi</math>.
| |
− | | |
− | The area of the triangle is <math>\frac{1^{2}\sqrt{3}}{4}=\frac{\sqrt{3}}{4}</math>
| |
− | | |
− | So the shaded area is <math>\frac{1}{8}\pi-\frac{1}{6}\pi+\frac{\sqrt{3}}{4}=\frac{\sqrt{3}}{4}-\frac{1}{24}\pi \Rightarrow C</math>
| |
− | | |
− | == See Also ==
| |
− | *[[2003 AMC 10A Problems]]
| |
− | *[[2003 AMC 10A Problems/Problem 18|Previous Problem]]
| |
− | *[[2003 AMC 10A Problems/Problem 20|Next Problem]]
| |
− | | |
− | [[Category:Introductory Geometry Problems]]
| |