Difference between revisions of "1997 AHSME Problems/Problem 23"

(Created page with "== See also == {{AHSME box|year=1997|num-b=22|num-a=24}}")
 
Line 1: Line 1:
 +
==Problem==
 +
 +
<asy>
 +
defaultpen(linewidth(.8pt)+fontsize(10pt));
 +
draw((-1,1)--(2,1));
 +
draw((-1,0)--(1,0));
 +
draw((-1,1)--(-1,0));
 +
draw((0,-1)--(0,3));
 +
draw((1,2)--(1,0));
 +
draw((-1,1)--(1,1));
 +
draw((0,2)--(1,2));
 +
draw((0,3)--(1,2));
 +
draw((0,-1)--(2,1));
 +
draw((0,-1)--((0,-1) + sqrt(2)*dir(-15)));
 +
draw(((0,-1) + sqrt(2)*dir(-15))--(1,0));
 +
label("$\textbf{A}$",foot((0,2),(0,3),(1,2)),SW);
 +
label("$\textbf{B}$",midpoint((0,1)--(1,2)));
 +
label("$\textbf{C}$",midpoint((-1,0)--(0,1)));
 +
label("$\textbf{D}$",midpoint((0,0)--(1,1)));
 +
label("$\textbf{E}$",midpoint((1,0)--(2,1)),NW);
 +
label("$\textbf{F}$",midpoint((0,-1)--(1,0)),NW);
 +
label("$\textbf{G}$",midpoint((0,-1)--(1,0)),2SE);</asy>
 +
 +
In the figure, polygons <math>A</math>, <math>E</math>, and <math>F</math> are isosceles right triangles; <math>B</math>, <math>C</math>, and <math>D</math> are squares with sides of length <math>1</math>; and <math>G</math> is an equilateral triangle. The figure can be folded along its edges to form a polyhedron having the polygons as faces. The volume of this polyhedron is
 +
 +
<math> \textbf{(A)}\ 1/2\qquad\textbf{(B)}\ 2/3\qquad\textbf{(C)}\ 3/4\qquad\textbf{(D)}\ 5/6\qquad\textbf{(E)}\ 4/3 </math>
 +
 +
 
== See also ==
 
== See also ==
 
{{AHSME box|year=1997|num-b=22|num-a=24}}
 
{{AHSME box|year=1997|num-b=22|num-a=24}}

Revision as of 17:20, 9 August 2011

Problem

[asy] defaultpen(linewidth(.8pt)+fontsize(10pt)); draw((-1,1)--(2,1)); draw((-1,0)--(1,0)); draw((-1,1)--(-1,0)); draw((0,-1)--(0,3)); draw((1,2)--(1,0)); draw((-1,1)--(1,1)); draw((0,2)--(1,2)); draw((0,3)--(1,2)); draw((0,-1)--(2,1)); draw((0,-1)--((0,-1) + sqrt(2)*dir(-15))); draw(((0,-1) + sqrt(2)*dir(-15))--(1,0)); label("$\textbf{A}$",foot((0,2),(0,3),(1,2)),SW); label("$\textbf{B}$",midpoint((0,1)--(1,2))); label("$\textbf{C}$",midpoint((-1,0)--(0,1))); label("$\textbf{D}$",midpoint((0,0)--(1,1))); label("$\textbf{E}$",midpoint((1,0)--(2,1)),NW); label("$\textbf{F}$",midpoint((0,-1)--(1,0)),NW); label("$\textbf{G}$",midpoint((0,-1)--(1,0)),2SE);[/asy]

In the figure, polygons $A$, $E$, and $F$ are isosceles right triangles; $B$, $C$, and $D$ are squares with sides of length $1$; and $G$ is an equilateral triangle. The figure can be folded along its edges to form a polyhedron having the polygons as faces. The volume of this polyhedron is

$\textbf{(A)}\ 1/2\qquad\textbf{(B)}\ 2/3\qquad\textbf{(C)}\ 3/4\qquad\textbf{(D)}\ 5/6\qquad\textbf{(E)}\ 4/3$


See also

1997 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions