Difference between revisions of "Geometric sequence"
(→See Also) |
IntrepidMath (talk | contribs) |
||
Line 23: | Line 23: | ||
For instance, the series <math>1 + \frac12 + \frac14 + \frac18 + \cdots</math>, sums to 2. The general formula for the sum of such a sequence is: | For instance, the series <math>1 + \frac12 + \frac14 + \frac18 + \cdots</math>, sums to 2. The general formula for the sum of such a sequence is: | ||
− | <math>S = \frac{a_0}{1-r}</math> | + | <math>S = \frac{a_0}{1-r}</math>. Proof: Let the sequence be <math>S=a+ar+ar^2+ar^3+\ldots</math>. Let that equation be (1). We can multiply (1) by r to get: <math>S \cdot r=ar+ar^2+ar^3+\ldots</math>. Let this be (2). We subtract these equations to get: <math> S-S\cdot r=a</math>. There is only one term on the RHS because the rest of the terms cancel out after subtraction. Finally, we can factor and divide, to get <math>S(1-r)=a</math>, thus <math>S=\frac{a}{1-r}</math>. This method of multiplying the sequence and subtracting equations is a frequently used method to evaluate sequences. |
Again, <math>a_0</math> is the first term in the sequence, and <math>r</math> is the common ratio. | Again, <math>a_0</math> is the first term in the sequence, and <math>r</math> is the common ratio. |
Revision as of 10:05, 23 June 2006
Contents
[hide]Definition
A geometric sequence is a sequence of numbers in which each term is a fixed multiple of the previous term. For example: 1, 2, 4, 8, 16, 32, ... is a geometric sequence because each term is twice the previous term. In this case, 2 is called the common ratio of the sequence. More formally, a geometric sequence may be defined recursively by:
with a fixed and common ratio . Using this definition, the th term has the closed-form:
Summing a Geometric Sequence
The sum of the first terms of a geometric sequence is given by
where is the first term in the sequence, and is the common ratio.
Infinite Geometric Sequences
An infinite geometric sequence is a geometric sequence with an infinite number of terms. If the common ratio is small, the sum of the terms will approach a fixed limit. In this case, "small" means . We say that the sum of the terms of this sequence is a convergent sum.
For instance, the series , sums to 2. The general formula for the sum of such a sequence is:
. Proof: Let the sequence be . Let that equation be (1). We can multiply (1) by r to get: . Let this be (2). We subtract these equations to get: . There is only one term on the RHS because the rest of the terms cancel out after subtraction. Finally, we can factor and divide, to get , thus . This method of multiplying the sequence and subtracting equations is a frequently used method to evaluate sequences.
Again, is the first term in the sequence, and is the common ratio.
One common instance of summing infinite geometric sequences is the decimal expansion of most rational numbers. For instance, has first term and common ratio , so the infinite sum has value , just as we would have expected.