Difference between revisions of "Mock AIME 3 Pre 2005 Problems/Problem 15"
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | + | ==Problem== | |
+ | Let <math>\Omega</math> denote the value of the sum | ||
<math>\sum_{k=1}^{40} \cos^{-1}\left(\frac{k^2 + k + 1}{\sqrt{k^4 + 2k^3 + 3k^2 + 2k + 2}}\right)</math> | <math>\sum_{k=1}^{40} \cos^{-1}\left(\frac{k^2 + k + 1}{\sqrt{k^4 + 2k^3 + 3k^2 + 2k + 2}}\right)</math> | ||
The value of <math>\tan\left(\Omega\right)</math> can be expressed as <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Compute <math>m + n</math>. | The value of <math>\tan\left(\Omega\right)</math> can be expressed as <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Compute <math>m + n</math>. | ||
+ | |||
+ | ==Solution== | ||
+ | |||
+ | Let <cmath> x := k^2 + k + 1</cmath> | ||
+ | <cmath>a_k := \cos^{-1}\left(\frac{k^2 + k + 1}{\sqrt{k^4 + 2k^3 + 3k^2 + 2k + 2}} \right )</cmath> | ||
+ | |||
+ | Factoring the radicand, we have | ||
+ | <cmath>a_k = \cos^{-1}\left(\frac{x}{\sqrt{x^2+1}} \right )</cmath> | ||
+ | The fraction looks remarkably apt for a trigonometric substitution; namely, define <math>\theta</math> such that <math> x = \tan{\theta}</math>. Then the RHS becomes | ||
+ | <cmath>a_k = \cos^{-1}\left(\frac{\tan{\theta}}{\sec{\theta}} \right ) = \cos^{-1}{(\sin{\theta})}</cmath> | ||
+ | But <cmath>\cos{(\pi/2-\theta)} = \sin{\theta}</cmath> | ||
+ | Therefore, | ||
+ | <cmath> a_k = \pi/2 - \theta = \pi/2 - \tan^{-1}{x} </cmath> | ||
+ | This gives us | ||
+ | <cmath> \tan{a_k} = \tan{(\pi/2 - \tan^{-1}{x})} </cmath> | ||
+ | <cmath> = \cot{(\tan^{-1}{x})} = \dfrac{1}{\tan{(\tan^{-1}{x})} } </cmath> | ||
+ | <cmath> = \dfrac{1}{x} = \dfrac{1}{k^2+k+1} </cmath> | ||
+ | So now | ||
+ | <cmath> a_k = \tan^{-1}{\left( \dfrac{1}{k^2+k+1} \right) } </cmath> | ||
+ | <cmath> = \tan^{-1}{ \left( \dfrac{ (k+1) + (-k) }{ 1 - (-k)(k+1) } \right ) } </cmath> | ||
+ | <cmath> = \tan^{-1}{(k+1)} - \tan^{-1}{k} </cmath> | ||
+ | When we sum <math>a_k</math>, this sum now telescopes: | ||
+ | <cmath>\Omega = \sum_{k=1}^{40} a_k </cmath> | ||
+ | <cmath> = \sum_{k=1}^{40} \tan^{-1}{(k+1)} - \tan^{-1}{k} </cmath> | ||
+ | <cmath> = \tan^{-1}{41} - \tan^{-1}{1} </cmath> | ||
+ | Therefore, the required value | ||
+ | <cmath> \tan{\Omega} = \tan{(\tan^{-1}{41} - \tan^{-1}{1})} </cmath> | ||
+ | <cmath> = \dfrac{ 41 - 1}{1 + 41 \cdot 1 } </cmath> | ||
+ | <cmath> = \dfrac{40}{42} </cmath> | ||
+ | giving us the desired answer of <math>20+21=\boxed{41}</math>. | ||
+ | |||
+ | ==See Also== | ||
+ | {{Mock AIME box|year=Pre 2005|n=3|num-b=14|after=Last Question}} |
Latest revision as of 09:38, 4 April 2012
Problem
Let denote the value of the sum
The value of can be expressed as , where and are relatively prime positive integers. Compute .
Solution
Let
Factoring the radicand, we have The fraction looks remarkably apt for a trigonometric substitution; namely, define such that . Then the RHS becomes But Therefore, This gives us So now When we sum , this sum now telescopes: Therefore, the required value giving us the desired answer of .
See Also
Mock AIME 3 Pre 2005 (Problems, Source) | ||
Preceded by Problem 14 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 |